3-D Correlation-Based Speckle Tracking

Widely-used 1-D/2-D speckle tracking techniques in elasticity imaging often experience significant speckle decorrelation in applications involving large elevational motion (i.e., out of plane motion). The problem is more pronounced for cardiac strain rate imaging (SRI) since it is very difficult to...

Full description

Saved in:
Bibliographic Details
Published inUltrasonic imaging Vol. 27; no. 1; pp. 21 - 36
Main Authors Chen, X., Xie, H., Erkamp, R., Kim, K., Jia, C., Rubin, J. M., O'Donnell, M.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.01.2005
Dynamedia
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Widely-used 1-D/2-D speckle tracking techniques in elasticity imaging often experience significant speckle decorrelation in applications involving large elevational motion (i.e., out of plane motion). The problem is more pronounced for cardiac strain rate imaging (SRI) since it is very difficult to confine cardiac motion to a single image plane. Here, we present a 3-D correlation-based speckle tracking algorithm. Conceptually, 3-D speckle tracking is just an extension of 2-D phase-sensitive correlation-based speckle tracking. However, due to its high computational cost, optimization schemes, such as dynamic programming, decimation and two-path processing, are introduced to reduce the computational burden. To evaluate the proposed approach, a 3-D bar phantom under uniaxial compression was simulated for benchmark tests. A more sophisticated 3-D simulation of the left ventricle of the heart was also made to test the applicability of 3-D speckle tracking in cardiac SRI. Results from both simulations clearly demonstrated the feasibility of 3-D correlation-based speckle tracking. With the ability to follow 3-D speckle in 3-D space, 3-D speckle tracking outperforms lower-dimensional speckle tracking by minimizing decorrelation caused by pure elevational translation. In other words, 3-D tracking can push toward solely deformation-limited, decorrelation-optimized speckle tracking. Hardware implementation of the proposed 3-D speckle tracking algorithm using field programmable gate arrays (FPGA) is also discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0161-7346
1096-0910
DOI:10.1177/016173460502700102