Effect of temperature on triclosan toxicity in Pangasianodon hypophthalmus (Sauvage, 1878): Hematology, biochemistry and genotoxicity evaluation

The rising level of triclosan (TCS) in aquatic environment is raising concerns and in this context, evaluation of toxicity towards aquatic organisms under varying environmental conditions, especially temperature, is a pre-requisite for a better understanding of the toxic effects on specific metaboli...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 668; pp. 104 - 114
Main Authors Paul, Tapas, Shukla, S.P., Kumar, Kundan, Poojary, Nalini, Kumar, Saurav
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rising level of triclosan (TCS) in aquatic environment is raising concerns and in this context, evaluation of toxicity towards aquatic organisms under varying environmental conditions, especially temperature, is a pre-requisite for a better understanding of the toxic effects on specific metabolic processes. In this report, the mechanistic physiological responses of fish towards varying concentration of TCS at graded temperature were evaluated. The static renewal acute test was performed, and 96 h median lethal concentration (LC50) of TCS for Pangasianodon hypophthalmus was estimated and the values were 848.33, 1181.94 and 1356.96 μg L−1 at 25, 30 and 35 °C respectively. The chronic study was performed for 30 days at 1/5th and 1/10th concentration of the estimated LC50 of TCS at 25, 30 and 35 °C respectively. The chronic effects resulted in significant decrease in total erythrocyte count (TEC), hemoglobin (Hb), packed cell volume (PCV), mean corpuscular hemoglobin (MCH) and mean cell volume (MCV), while a significant increase in total leukocyte count (TLC), mean corpuscular hemoglobin concentration (MCHC) and red cell distribution width (RDW) was observed in TCS exposed groups at 25–35 °C. Further, a significant increase in activity of transaminase enzymes, lactate dehydrogenase (LDH) and antioxidant enzymes (superoxide dismutase) (SOD) and catalase (CAT) except glutathione-S-transferase (GST) in liver and acetylcholinesterase (AChE) in brain of the TCS exposed fish was recorded in all the above temperature range. Severe damage of DNA in nucleus of blood and liver cells, and high micronuclei frequency (MNi) was noticed in TCS exposed groups at 25 °C. The report provides convincing evidence for the effect of temperature on TCS toxicity. The findings will help in gaining a better insight into the change in toxicity of TCS in a natural environment where diurnal variations in temperature may be crucial in determining the overall extent of toxicity. [Display omitted] •Lower temperature causes the higher extent of acute toxicity of triclosan in fish.•Activity of oxidative stress parameters of fish modify due to TCS at low temperature.•AChE activity in brain was inhibited due to rise in concentration of TCS and temperature.•Rise in TCS at low temperature induced MNi and DNA damage to blood and liver cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.02.443