HPAC: a forest tree species recognition network based on multi- scale spatial enhancement in remote sensing images

Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific region...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 44; no. 19; pp. 5960 - 5975
Main Authors Hou, Jingjin, Zhou, Houkui, Yu, Huimin, Hu, Haoji
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 02.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific regions, thereby struggling to adequately handle the similarity between classes. Furthermore, due to the singular nature of features, effectively representing the attributes of tree species images becomes challenging, consequently impacting classification performance. To tackle these issues, a novel approach for forest tree species classification in remote sensing images is proposed, based on the Hollow Pyramid Attention Combination (HPAC) network. Initially, a Shallow Multi-scale Hollow Fusion (SMHF) module is introduced before the 7 × 7 convolution in the ResNet-50 network and the first residual block's first layer. This module employs dilated convolutions to achieve varying receptive fields. Moreover, it incorporates positional feature information, significantly enhancing the shallow-level feature extraction capabilities, resulting in a richer feature representation. Subsequently, to minimize network parameters and computational workload while bolstering the capacity to recognize deep-level features, the last residual block of the ResNet-50 differentiation is substituted with a Maxpool Avgpool Fusion (MAF) module. This replacement serves to enhance classification accuracy. The classification process is ultimately concluded with a Softmax classifier. Experimental results underscore the effectiveness of the proposed method, achieving a classification accuracy of 95.89% on the PCANDVI dataset of forest tree species data (FTSD). In summary, the introduced HPAC network proves to be both feasible and effective.
AbstractList Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific regions, thereby struggling to adequately handle the similarity between classes. Furthermore, due to the singular nature of features, effectively representing the attributes of tree species images becomes challenging, consequently impacting classification performance. To tackle these issues, a novel approach for forest tree species classification in remote sensing images is proposed, based on the Hollow Pyramid Attention Combination (HPAC) network. Initially, a Shallow Multi-scale Hollow Fusion (SMHF) module is introduced before the 7 × 7 convolution in the ResNet-50 network and the first residual block's first layer. This module employs dilated convolutions to achieve varying receptive fields. Moreover, it incorporates positional feature information, significantly enhancing the shallow-level feature extraction capabilities, resulting in a richer feature representation. Subsequently, to minimize network parameters and computational workload while bolstering the capacity to recognize deep-level features, the last residual block of the ResNet-50 differentiation is substituted with a Maxpool Avgpool Fusion (MAF) module. This replacement serves to enhance classification accuracy. The classification process is ultimately concluded with a Softmax classifier. Experimental results underscore the effectiveness of the proposed method, achieving a classification accuracy of 95.89% on the PCANDVI dataset of forest tree species data (FTSD). In summary, the introduced HPAC network proves to be both feasible and effective.
Author Hou, Jingjin
Hu, Haoji
Zhou, Houkui
Yu, Huimin
Author_xml – sequence: 1
  givenname: Jingjin
  orcidid: 0009-0009-7483-7616
  surname: Hou
  fullname: Hou, Jingjin
  organization: Zhejiang A&F University
– sequence: 2
  givenname: Houkui
  surname: Zhou
  fullname: Zhou, Houkui
  email: zhouhk@zju.edu.cn
  organization: Zhejiang A&F University
– sequence: 3
  givenname: Huimin
  surname: Yu
  fullname: Yu, Huimin
  organization: Zhejiang University
– sequence: 4
  givenname: Haoji
  surname: Hu
  fullname: Hu, Haoji
  organization: Zhejiang University
BookMark eNqFkcFPHCEUxkljk662f0ITkl68zMobhpmhvWg2rZqYtAfvBPDNFsvAFtgY_3uZrF48aDhAHt_35b33OyZHIQYk5CuwNbCRnTHoOEAP65a1fN22Yhh7-EBWwPu-EZLBEVktmmYRfSLHOd8zxvpBDCuSrv5cbL5TTaeYMBdaEiLNO7QOM01o4za44mKgActDTP-o0RnvaC3Me19cQ7PVfnHo4rSnGP7qYHHGUKgLNWCOpf5iyC5sqZv1FvNn8nHSPuOX5_uE3P76ebu5am5-X15vLm4aywcoDVimJ24kaCmlEZzLrnZtusGYfjIGxsFYYQHEVN9ScjaNIDhCK3nPheEn5PQQu0vx_77OpmaXLXqvA8Z9Vpx19QgQY5V-eyW9j_sUanOqHcdO8q4TrKp-HFQ2xZwTTsq6opfllKSdV8DUgkO94FALDvWMo7rFK_cu1X2kx3d95wefCxXRrCsEf6eKfvQxTaku29VR3o54AvdColU
CitedBy_id crossref_primary_10_1186_s13007_024_01232_0
Cites_doi 10.3390/rs13193890
10.1109/CVPR.2016.90
10.1016/j.isprsjprs.2021.01.008
10.3390/f13010033
10.1007/978-3-030-01264-9_8
10.1109/CVPR42600.2020.01044
10.1109/ICCV.2019.00140
10.1109/JSTARS.2020.3043109
10.1109/TGRS.2017.2783902
10.3390/rs11030281
10.3390/su15032741
10.1109/CVPR.2017.243
10.3390/rs10060871
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2023.2257861
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 5975
ExternalDocumentID 10_1080_01431161_2023_2257861
2257861
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
TASJS
7S9
L.6
ID FETCH-LOGICAL-c371t-1c0af3b91a999b53394000b47bb6fbb187bc5c115fb189930f8153e1293635b3
ISSN 0143-1161
1366-5901
IngestDate Wed Jul 02 04:40:47 EDT 2025
Wed Aug 13 08:17:21 EDT 2025
Tue Jul 01 04:05:03 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Dec 25 09:02:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-1c0af3b91a999b53394000b47bb6fbb187bc5c115fb189930f8153e1293635b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0009-7483-7616
PQID 2884934450
PQPubID 2045515
PageCount 16
ParticipantIDs proquest_miscellaneous_3040405158
informaworld_taylorfrancis_310_1080_01431161_2023_2257861
crossref_citationtrail_10_1080_01431161_2023_2257861
proquest_journals_2884934450
crossref_primary_10_1080_01431161_2023_2257861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_8_1
e_1_3_2_7_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Tan M. (e_1_3_2_11_1) 2021
References_xml – ident: e_1_3_2_13_1
  doi: 10.3390/rs13193890
– ident: e_1_3_2_4_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_3_2_16_1
  doi: 10.1016/j.isprsjprs.2021.01.008
– ident: e_1_3_2_12_1
  doi: 10.3390/f13010033
– ident: e_1_3_2_9_1
  doi: 10.1007/978-3-030-01264-9_8
– ident: e_1_3_2_10_1
  doi: 10.1109/CVPR42600.2020.01044
– start-page: 10096
  volume-title: International conference on machine learning
  year: 2021
  ident: e_1_3_2_11_1
– ident: e_1_3_2_6_1
  doi: 10.1109/ICCV.2019.00140
– ident: e_1_3_2_14_1
  doi: 10.1109/JSTARS.2020.3043109
– ident: e_1_3_2_2_1
  doi: 10.1109/TGRS.2017.2783902
– ident: e_1_3_2_15_1
  doi: 10.3390/rs11030281
– ident: e_1_3_2_3_1
– ident: e_1_3_2_5_1
  doi: 10.3390/su15032741
– ident: e_1_3_2_7_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_3_2_8_1
  doi: 10.3390/rs10060871
SSID ssj0006757
Score 2.4477684
Snippet Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5960
SubjectTerms Accuracy
attention mechanism
Classification
Convolution
data collection
Deep learning
Feature extraction
Feature recognition
forest trees
Forests
image analysis
Image enhancement
learning
Machine learning
Modules
multi-scale
phylogeny
Plant species
position enhancement
Remote sensing
Species classification
Taxonomy
tree species identification
Trees
Title HPAC: a forest tree species recognition network based on multi- scale spatial enhancement in remote sensing images
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2023.2257861
https://www.proquest.com/docview/2884934450
https://www.proquest.com/docview/3040405158
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbK9gAvE-MiCgMZibcqUS5OmuytGrAKCcRDEdNeoji1tW6QojV52c_hl-47sZMmWqVxeYkiu7ajfl-Oz3HOhbF3ws91EsrCWUZSOCLJUwdUjh3oyqFOqbR5TueQn7_E82_i01l0Nhr97nkt1ZV0i5udcSX_giragCtFyf4Fst2kaMA98MUVCOP6RxjPv85OTLQyVE-Id3IbVxMKnoT9O-l8gwBwaby9J7RpLekDQeNI6Ew2gIhGYEJgpcoLIkHjH9DEuQBH9JKPO0W-_ITs2fS12eFxYi8JxXBkR5113ZAGTZerjpTnF6YZvVf1qpNCpq2momNb6jVt-fpy1T-sCIzb29a0XdypGzI42sTPfZOa3VVGHIdx7FB0bF9em3yRLS_TnvSNUlObwO7ksJWinbuEdavEgrSeSw_qBiS72sUHCbhtzwO2H8AUgSzdn83fn3_v9nuYXCYo3z5_GydGGdx3LTHQgAb5ce_oA42Ss3jMDqx1wmeGaodspMon7OGpsnnNn7Jrotwxz7khHCfCcUs43iMct4TjDeE4GgzheEM4bgnHe4Tjq5Ib2nBLG24I94wtPn5YnMwdW7bDKcKpXzl-4eU6lKmfw_iQMCdS7BOeFFMpYy2ln0xlERWwRDTuoR57OsG2q0jxhPYrw-dsr1yX6gXjUK4kZUwsPK0ElSsWgdQ60Xqpl-E0UmMm2n8yK2xKe6qs8iPz28y3FoCMAMgsAGPmdsN-mZwu9w1I-zBlVUNjbRichfeMPWoxzex7uMmCJBFpKETkjdnbrhuCnb7W5aVa15gW26ugCkzJy_9Y_hV7tH0Pj9hedV2r11CjK_nG8vgW6QjBSA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xONBLKZSKBVqMBMeEJHZelXpAtGh5rThsJW5WnLVhBfUikhWCf9W_0l_UmTxWPIQ4IA7colh2Ensen52Z-QA2hZ-ZhKvcGYRKOCLJUgdFOXIQK3OTErV5RueQx72o-1scnIanU_C3zYWhsEraQ5u6UERlq0m56TC6DYnbppp0PkIVl7i_3YCkLvKbwMpDfXuD27bix_5PXOOtINj71d_tOg2zgJPz2C8dP_cyw1XqZ4iPFCIeogf3lIiVioxSfhKrPMwRLBm8Rg_umQQtgybfiA5acRx2GmbDNIpJtbjXmxh_xN91hjZV_sRXbJOGnnvrB-7wQbHUJ86h8nh78_Cvnas60OXCHZfKze8elZF8V5P5CT42-Jvt1AqzAFPaLsJcQwV_fvsZrrsnO7vfWcZwjnBSGP21Z5SPOtQFm4RbjSyzdQA9IxwwYHijis10WIFSTz1Q5PFB2p6TXtEZLBtaHABVA1spbcCeseEfNOfFEvTf4ou_wIwdWb0MDOGDopqAuWe0IEJeEShjEmMGZsDjUHdAtOIh86ZoO3GHXEq_re3aLJ-k5ZPN8nXAnXS7qquWvNQhvS97sqyOi0zN7SL5C33XWkGVjQEsZJAkIuVChF4HNibNaLrof1Rm9WiMw6IDEcQxlKy84vHrMNftHx_Jo_3e4Sp8oKYq2DJYg5nyeqy_Imgs1bdKTRnIN5bk_9HFaG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC2xSMBl2AZNz7AYCY7JZHHSCRIHBLSarcUBJG5WnNjQYnAjkhaCr5pf4Y-oytJi0YjDiAO3KJadxK7l2amqB7DB3URHvkytLJDc4lESWyjKoYVY2dcxUZsndA550gu75_zwIrgYg79NLgyFVdIeWleFIkpbTcp9m-kmIu43laRzEanYRP1teyR0oVvHVR6ph3vcteXbB3u4xJue19k_2-1aNbGAlfptt7Dc1Em0L2M3QXgkEfAQO7gjeVvKUEvpRm2ZBiliJY3X6MAdHaFhUOQa0T9LH4cdh8mQ8jopacTpjWw_wu8qQZsKf-IrNjlD_3rrV97wVa3Ud76hdHidWXhqpqqKc7m2h4W008c3VSS_0lzOwbcafbOdSl3mYUyZBZiuieCvHhbhrnu6s7vFEoZThHPC6J89o2zUvsrZKNhqYJipwucZoYCM4Y0yMtNiOco89UCBxwcpc0VaRSewrG9wAFQMbKWkAXPJ-jdozPPvcPYZX7wEE2Zg1A9gCB4kVQRMHa040fFyT2odaZ3pzG8HqgW8kQ6R1iXbiTnkj3Cbyq718glaPlEvXwvsUbfbqmbJRx3il6InivKwSFfMLsL_oO9yI6eiNn-58KKIxz7ngdOC9VEzGi76G5UYNRjisOg-ODEMRT__4_FrMHW61xHHB72jXzBDLWWkpbcME8XdUK0gYizkaqmkDMQnC_IzznJnEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HPAC%3A+a+forest+tree+species+recognition+network+based+on+multi-+scale+spatial+enhancement+in+remote+sensing+images&rft.jtitle=International+journal+of+remote+sensing&rft.au=Hou%2C+Jingjin&rft.au=Zhou%2C+Houkui&rft.au=Yu%2C+Huimin&rft.au=Hu%2C+Haoji&rft.date=2023-10-02&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=44&rft.issue=19&rft.spage=5960&rft.epage=5975&rft_id=info:doi/10.1080%2F01431161.2023.2257861&rft.externalDocID=2257861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon