HPAC: a forest tree species recognition network based on multi- scale spatial enhancement in remote sensing images
Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific region...
Saved in:
Published in | International journal of remote sensing Vol. 44; no. 19; pp. 5960 - 5975 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
02.10.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific regions, thereby struggling to adequately handle the similarity between classes. Furthermore, due to the singular nature of features, effectively representing the attributes of tree species images becomes challenging, consequently impacting classification performance. To tackle these issues, a novel approach for forest tree species classification in remote sensing images is proposed, based on the Hollow Pyramid Attention Combination (HPAC) network. Initially, a Shallow Multi-scale Hollow Fusion (SMHF) module is introduced before the 7 × 7 convolution in the ResNet-50 network and the first residual block's first layer. This module employs dilated convolutions to achieve varying receptive fields. Moreover, it incorporates positional feature information, significantly enhancing the shallow-level feature extraction capabilities, resulting in a richer feature representation. Subsequently, to minimize network parameters and computational workload while bolstering the capacity to recognize deep-level features, the last residual block of the ResNet-50 differentiation is substituted with a Maxpool Avgpool Fusion (MAF) module. This replacement serves to enhance classification accuracy. The classification process is ultimately concluded with a Softmax classifier. Experimental results underscore the effectiveness of the proposed method, achieving a classification accuracy of 95.89% on the PCANDVI dataset of forest tree species data (FTSD). In summary, the introduced HPAC network proves to be both feasible and effective. |
---|---|
AbstractList | Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific regions, thereby struggling to adequately handle the similarity between classes. Furthermore, due to the singular nature of features, effectively representing the attributes of tree species images becomes challenging, consequently impacting classification performance. To tackle these issues, a novel approach for forest tree species classification in remote sensing images is proposed, based on the Hollow Pyramid Attention Combination (HPAC) network. Initially, a Shallow Multi-scale Hollow Fusion (SMHF) module is introduced before the 7 × 7 convolution in the ResNet-50 network and the first residual block's first layer. This module employs dilated convolutions to achieve varying receptive fields. Moreover, it incorporates positional feature information, significantly enhancing the shallow-level feature extraction capabilities, resulting in a richer feature representation. Subsequently, to minimize network parameters and computational workload while bolstering the capacity to recognize deep-level features, the last residual block of the ResNet-50 differentiation is substituted with a Maxpool Avgpool Fusion (MAF) module. This replacement serves to enhance classification accuracy. The classification process is ultimately concluded with a Softmax classifier. Experimental results underscore the effectiveness of the proposed method, achieving a classification accuracy of 95.89% on the PCANDVI dataset of forest tree species data (FTSD). In summary, the introduced HPAC network proves to be both feasible and effective. |
Author | Hou, Jingjin Hu, Haoji Zhou, Houkui Yu, Huimin |
Author_xml | – sequence: 1 givenname: Jingjin orcidid: 0009-0009-7483-7616 surname: Hou fullname: Hou, Jingjin organization: Zhejiang A&F University – sequence: 2 givenname: Houkui surname: Zhou fullname: Zhou, Houkui email: zhouhk@zju.edu.cn organization: Zhejiang A&F University – sequence: 3 givenname: Huimin surname: Yu fullname: Yu, Huimin organization: Zhejiang University – sequence: 4 givenname: Haoji surname: Hu fullname: Hu, Haoji organization: Zhejiang University |
BookMark | eNqFkcFPHCEUxkljk662f0ITkl68zMobhpmhvWg2rZqYtAfvBPDNFsvAFtgY_3uZrF48aDhAHt_35b33OyZHIQYk5CuwNbCRnTHoOEAP65a1fN22Yhh7-EBWwPu-EZLBEVktmmYRfSLHOd8zxvpBDCuSrv5cbL5TTaeYMBdaEiLNO7QOM01o4za44mKgActDTP-o0RnvaC3Me19cQ7PVfnHo4rSnGP7qYHHGUKgLNWCOpf5iyC5sqZv1FvNn8nHSPuOX5_uE3P76ebu5am5-X15vLm4aywcoDVimJ24kaCmlEZzLrnZtusGYfjIGxsFYYQHEVN9ScjaNIDhCK3nPheEn5PQQu0vx_77OpmaXLXqvA8Z9Vpx19QgQY5V-eyW9j_sUanOqHcdO8q4TrKp-HFQ2xZwTTsq6opfllKSdV8DUgkO94FALDvWMo7rFK_cu1X2kx3d95wefCxXRrCsEf6eKfvQxTaku29VR3o54AvdColU |
CitedBy_id | crossref_primary_10_1186_s13007_024_01232_0 |
Cites_doi | 10.3390/rs13193890 10.1109/CVPR.2016.90 10.1016/j.isprsjprs.2021.01.008 10.3390/f13010033 10.1007/978-3-030-01264-9_8 10.1109/CVPR42600.2020.01044 10.1109/ICCV.2019.00140 10.1109/JSTARS.2020.3043109 10.1109/TGRS.2017.2783902 10.3390/rs11030281 10.3390/su15032741 10.1109/CVPR.2017.243 10.3390/rs10060871 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
DOI | 10.1080/01431161.2023.2257861 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 5975 |
ExternalDocumentID | 10_1080_01431161_2023_2257861 2257861 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-1c0af3b91a999b53394000b47bb6fbb187bc5c115fb189930f8153e1293635b3 |
ISSN | 0143-1161 1366-5901 |
IngestDate | Wed Jul 02 04:40:47 EDT 2025 Wed Aug 13 08:17:21 EDT 2025 Tue Jul 01 04:05:03 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Dec 25 09:02:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-1c0af3b91a999b53394000b47bb6fbb187bc5c115fb189930f8153e1293635b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0009-7483-7616 |
PQID | 2884934450 |
PQPubID | 2045515 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3040405158 informaworld_taylorfrancis_310_1080_01431161_2023_2257861 crossref_citationtrail_10_1080_01431161_2023_2257861 proquest_journals_2884934450 crossref_primary_10_1080_01431161_2023_2257861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-02 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_8_1 e_1_3_2_7_1 e_1_3_2_2_1 e_1_3_2_10_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 Tan M. (e_1_3_2_11_1) 2021 |
References_xml | – ident: e_1_3_2_13_1 doi: 10.3390/rs13193890 – ident: e_1_3_2_4_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_3_2_16_1 doi: 10.1016/j.isprsjprs.2021.01.008 – ident: e_1_3_2_12_1 doi: 10.3390/f13010033 – ident: e_1_3_2_9_1 doi: 10.1007/978-3-030-01264-9_8 – ident: e_1_3_2_10_1 doi: 10.1109/CVPR42600.2020.01044 – start-page: 10096 volume-title: International conference on machine learning year: 2021 ident: e_1_3_2_11_1 – ident: e_1_3_2_6_1 doi: 10.1109/ICCV.2019.00140 – ident: e_1_3_2_14_1 doi: 10.1109/JSTARS.2020.3043109 – ident: e_1_3_2_2_1 doi: 10.1109/TGRS.2017.2783902 – ident: e_1_3_2_15_1 doi: 10.3390/rs11030281 – ident: e_1_3_2_3_1 – ident: e_1_3_2_5_1 doi: 10.3390/su15032741 – ident: e_1_3_2_7_1 doi: 10.1109/CVPR.2017.243 – ident: e_1_3_2_8_1 doi: 10.3390/rs10060871 |
SSID | ssj0006757 |
Score | 2.4477684 |
Snippet | Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5960 |
SubjectTerms | Accuracy attention mechanism Classification Convolution data collection Deep learning Feature extraction Feature recognition forest trees Forests image analysis Image enhancement learning Machine learning Modules multi-scale phylogeny Plant species position enhancement Remote sensing Species classification Taxonomy tree species identification Trees |
Title | HPAC: a forest tree species recognition network based on multi- scale spatial enhancement in remote sensing images |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2023.2257861 https://www.proquest.com/docview/2884934450 https://www.proquest.com/docview/3040405158 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbK9gAvE-MiCgMZibcqUS5OmuytGrAKCcRDEdNeoji1tW6QojV52c_hl-47sZMmWqVxeYkiu7ajfl-Oz3HOhbF3ws91EsrCWUZSOCLJUwdUjh3oyqFOqbR5TueQn7_E82_i01l0Nhr97nkt1ZV0i5udcSX_giragCtFyf4Fst2kaMA98MUVCOP6RxjPv85OTLQyVE-Id3IbVxMKnoT9O-l8gwBwaby9J7RpLekDQeNI6Ew2gIhGYEJgpcoLIkHjH9DEuQBH9JKPO0W-_ITs2fS12eFxYi8JxXBkR5113ZAGTZerjpTnF6YZvVf1qpNCpq2momNb6jVt-fpy1T-sCIzb29a0XdypGzI42sTPfZOa3VVGHIdx7FB0bF9em3yRLS_TnvSNUlObwO7ksJWinbuEdavEgrSeSw_qBiS72sUHCbhtzwO2H8AUgSzdn83fn3_v9nuYXCYo3z5_GydGGdx3LTHQgAb5ce_oA42Ss3jMDqx1wmeGaodspMon7OGpsnnNn7Jrotwxz7khHCfCcUs43iMct4TjDeE4GgzheEM4bgnHe4Tjq5Ib2nBLG24I94wtPn5YnMwdW7bDKcKpXzl-4eU6lKmfw_iQMCdS7BOeFFMpYy2ln0xlERWwRDTuoR57OsG2q0jxhPYrw-dsr1yX6gXjUK4kZUwsPK0ElSsWgdQ60Xqpl-E0UmMm2n8yK2xKe6qs8iPz28y3FoCMAMgsAGPmdsN-mZwu9w1I-zBlVUNjbRichfeMPWoxzex7uMmCJBFpKETkjdnbrhuCnb7W5aVa15gW26ugCkzJy_9Y_hV7tH0Pj9hedV2r11CjK_nG8vgW6QjBSA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xONBLKZSKBVqMBMeEJHZelXpAtGh5rThsJW5WnLVhBfUikhWCf9W_0l_UmTxWPIQ4IA7colh2Ensen52Z-QA2hZ-ZhKvcGYRKOCLJUgdFOXIQK3OTErV5RueQx72o-1scnIanU_C3zYWhsEraQ5u6UERlq0m56TC6DYnbppp0PkIVl7i_3YCkLvKbwMpDfXuD27bix_5PXOOtINj71d_tOg2zgJPz2C8dP_cyw1XqZ4iPFCIeogf3lIiVioxSfhKrPMwRLBm8Rg_umQQtgybfiA5acRx2GmbDNIpJtbjXmxh_xN91hjZV_sRXbJOGnnvrB-7wQbHUJ86h8nh78_Cvnas60OXCHZfKze8elZF8V5P5CT42-Jvt1AqzAFPaLsJcQwV_fvsZrrsnO7vfWcZwjnBSGP21Z5SPOtQFm4RbjSyzdQA9IxwwYHijis10WIFSTz1Q5PFB2p6TXtEZLBtaHABVA1spbcCeseEfNOfFEvTf4ou_wIwdWb0MDOGDopqAuWe0IEJeEShjEmMGZsDjUHdAtOIh86ZoO3GHXEq_re3aLJ-k5ZPN8nXAnXS7qquWvNQhvS97sqyOi0zN7SL5C33XWkGVjQEsZJAkIuVChF4HNibNaLrof1Rm9WiMw6IDEcQxlKy84vHrMNftHx_Jo_3e4Sp8oKYq2DJYg5nyeqy_Imgs1bdKTRnIN5bk_9HFaG4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC2xSMBl2AZNz7AYCY7JZHHSCRIHBLSarcUBJG5WnNjQYnAjkhaCr5pf4Y-oytJi0YjDiAO3KJadxK7l2amqB7DB3URHvkytLJDc4lESWyjKoYVY2dcxUZsndA550gu75_zwIrgYg79NLgyFVdIeWleFIkpbTcp9m-kmIu43laRzEanYRP1teyR0oVvHVR6ph3vcteXbB3u4xJue19k_2-1aNbGAlfptt7Dc1Em0L2M3QXgkEfAQO7gjeVvKUEvpRm2ZBiliJY3X6MAdHaFhUOQa0T9LH4cdh8mQ8jopacTpjWw_wu8qQZsKf-IrNjlD_3rrV97wVa3Ud76hdHidWXhqpqqKc7m2h4W008c3VSS_0lzOwbcafbOdSl3mYUyZBZiuieCvHhbhrnu6s7vFEoZThHPC6J89o2zUvsrZKNhqYJipwucZoYCM4Y0yMtNiOco89UCBxwcpc0VaRSewrG9wAFQMbKWkAXPJ-jdozPPvcPYZX7wEE2Zg1A9gCB4kVQRMHa040fFyT2odaZ3pzG8HqgW8kQ6R1iXbiTnkj3Cbyq718glaPlEvXwvsUbfbqmbJRx3il6InivKwSFfMLsL_oO9yI6eiNn-58KKIxz7ngdOC9VEzGi76G5UYNRjisOg-ODEMRT__4_FrMHW61xHHB72jXzBDLWWkpbcME8XdUK0gYizkaqmkDMQnC_IzznJnEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HPAC%3A+a+forest+tree+species+recognition+network+based+on+multi-+scale+spatial+enhancement+in+remote+sensing+images&rft.jtitle=International+journal+of+remote+sensing&rft.au=Hou%2C+Jingjin&rft.au=Zhou%2C+Houkui&rft.au=Yu%2C+Huimin&rft.au=Hu%2C+Haoji&rft.date=2023-10-02&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=44&rft.issue=19&rft.spage=5960&rft.epage=5975&rft_id=info:doi/10.1080%2F01431161.2023.2257861&rft.externalDocID=2257861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |