HPAC: a forest tree species recognition network based on multi- scale spatial enhancement in remote sensing images

Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific region...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 44; no. 19; pp. 5960 - 5975
Main Authors Hou, Jingjin, Zhou, Houkui, Yu, Huimin, Hu, Haoji
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 02.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Forest tree species recognition is a pivotal subject in the field of remote sensing. To address this, deep learning has been extensively applied. Thus far, most classification methods have generally relied on learning certain global features, yet often overlook the characteristics of specific regions, thereby struggling to adequately handle the similarity between classes. Furthermore, due to the singular nature of features, effectively representing the attributes of tree species images becomes challenging, consequently impacting classification performance. To tackle these issues, a novel approach for forest tree species classification in remote sensing images is proposed, based on the Hollow Pyramid Attention Combination (HPAC) network. Initially, a Shallow Multi-scale Hollow Fusion (SMHF) module is introduced before the 7 × 7 convolution in the ResNet-50 network and the first residual block's first layer. This module employs dilated convolutions to achieve varying receptive fields. Moreover, it incorporates positional feature information, significantly enhancing the shallow-level feature extraction capabilities, resulting in a richer feature representation. Subsequently, to minimize network parameters and computational workload while bolstering the capacity to recognize deep-level features, the last residual block of the ResNet-50 differentiation is substituted with a Maxpool Avgpool Fusion (MAF) module. This replacement serves to enhance classification accuracy. The classification process is ultimately concluded with a Softmax classifier. Experimental results underscore the effectiveness of the proposed method, achieving a classification accuracy of 95.89% on the PCANDVI dataset of forest tree species data (FTSD). In summary, the introduced HPAC network proves to be both feasible and effective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0143-1161
1366-5901
1366-5901
DOI:10.1080/01431161.2023.2257861