Endocardial endothelium in the avascular heart of the frog: morphology and role of nitric oxide

Endocardial endothelial morphology and the physiological modulatory role of nitric oxide (NO) were studied in an in vitro preparation of the working intact heart of the frog Rana esculenta, which lacks coronary vasculature and is thus devoid of a coronary vascular endothelium. En face confocal scann...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 200; no. Pt 24; pp. 3109 - 3118
Main Authors Sys, S U, Pellegrino, D, Mazza, R, Gattuso, A, Andries, L J, Tota, L
Format Journal Article
LanguageEnglish
Published England 01.12.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endocardial endothelial morphology and the physiological modulatory role of nitric oxide (NO) were studied in an in vitro preparation of the working intact heart of the frog Rana esculenta, which lacks coronary vasculature and is thus devoid of a coronary vascular endothelium. En face confocal scanning laser microscopy of samples of perfused fixed hearts demonstrated the presence of NO synthase as a cytoplasmic constituent of the endocardial endothelial cells. Stroke volume (as a measure of performance in paced frog hearts) and stroke work (as an index of systolic function) increased by approximately 5 % after inhibition of the NO-cGMP pathway with 10(-4 )mol l-1 NG-nitro-l-arginine methyl ester and by approximately 8 % after inhibition with 10(-6 )mol l-1 Methylene Blue. In contrast, stroke volume and stroke work decreased by approximately 22 % after activation of the NO-cGMP pathway with sodium nitroprusside (10(-4 )mol l-1), while 3-morpholinosydnonimine (5x10(-8) to 10(-5 )mol l-1) caused a decrease of between 15 and 30 % and 8-bromo-cGMP (10(-6 )mol l-1) a decrease of approximately 8 %. These responses were significantly attenuated after exposure of the ventricular luminal to Triton X-100 (0.05 %, 0.1 ml), which itself increased performance (by over 10 %) without detectable morphological changes. These results show that the endocardial endothelium of Rana esculenta produces amounts of NO sufficient to modulate ventricular performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.200.24.3109