Fast, autonomous flight in GPS‐denied and cluttered environments
One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe th...
Saved in:
Published in | Journal of field robotics Vol. 35; no. 1; pp. 101 - 120 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development and present results from extensive experimental testing in real‐world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS‐denied environments. |
---|---|
ISSN: | 1556-4959 1556-4967 |
DOI: | 10.1002/rob.21774 |