Power-Delay Tradeoff over Wireless Networks

When transmitting stochastic traffic flows over wireless networks, there exists an inherent tradeoff between average transmit power and corresponding queuing-delay bound. In this paper, we investigate such a tradeoff and show how average power increases as delay-bound requirement for wireless networ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 61; no. 9; pp. 3673 - 3684
Main Authors Zhang, Xi, Tang, Jia
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When transmitting stochastic traffic flows over wireless networks, there exists an inherent tradeoff between average transmit power and corresponding queuing-delay bound. In this paper, we investigate such a tradeoff and show how average power increases as delay-bound requirement for wireless network traffics becomes stringent. Specifically, we propose the resource allocation schemes to minimize the power consumption subject to a delay quality-of-service (QoS) constraint, where the delay constraint is in terms of queue-length decay rate when an arrival traffic is transmitted through the wireless networks. We focus on orthogonal-frequency-division-multiplexing (OFDM) communications under three different network infrastructures, namely, point-to-point link, multihop amplify-and-forward (AF) network, and multiuser cellular network. We derive the optimal resource allocation policies for each scenario, and compare their performances with other existing resource-allocation policies. The obtained simulation and numerical results show that using our proposed optimal resource-allocation policies, significant power saving can be achieved. Furthermore, our OFDM-based communications systems can significantly reduce the power consumption, especially under stringent delay constraint.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2013.061913.120001