Structures of a Phosphoryl Derivative of 4-Allyl-2,4-dihydro-3H-1,2,4-triazole-3-thione: An Illustrative Example of Conformational Polymorphism

Two polymorphic forms of a conformationally flexible molecule, 5-[(Diphenylphosphoryl)methyl]-4-(prop-2-en-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, were obtained by crystallization and characterized by X-ray diffraction analysis and differential scanning calorimetry. The relative stability of p...

Full description

Saved in:
Bibliographic Details
Published inCrystals (Basel) Vol. 11; no. 9; p. 1126
Main Authors Fedyanin, Ivan V., Samigullina, Aida I., Krutov, Ivan A., Gavrilova, Elena L., Zakharychev, Dmitry V.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two polymorphic forms of a conformationally flexible molecule, 5-[(Diphenylphosphoryl)methyl]-4-(prop-2-en-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, were obtained by crystallization and characterized by X-ray diffraction analysis and differential scanning calorimetry. The relative stability of polymorphic forms was estimated with DFT calculations of crystal structures and isolated molecules. It turns out, that in the first more dense polymorph with higher cohesion energy and crystal lattice energy, the molecule adopts an energetically unfavorable conformation, and forms dimers with lower H-bond strength, as compared to the second polymorph. On the other hand, in the second polymorph, the molecule adopts almost the lowest-energy conformation and forms infinite chains via strong H-bonds. The first form that seems to be more thermodynamically stable at room temperature transforms into the second form via two endothermic phase transitions; the apparent irreversibility of the transition is due to high energy difference between the molecular conformations in crystals.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst11091126