Reactivity of a functional carbonyl moiety in bovine aortic lysyl oxidase. Evidence against pyridoxal 5'-phosphate

Previous studies have pointed towards a cofactor role for pyridoxal 5'-phosphate (PLP) in lysyl oxidase, the enzyme that generates the peptidyl aldehyde precursor to the lysine-derived cross-linkages in elastin and collagen. The nature of a carbonyl moiety in purified bovine aortic lysyl oxidas...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 235; no. 2; pp. 597 - 605
Main Authors Williamson, P R, Kittler, J M, Thanassi, J W, Kagan, H M
Format Journal Article
LanguageEnglish
Published England 15.04.1986
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies have pointed towards a cofactor role for pyridoxal 5'-phosphate (PLP) in lysyl oxidase, the enzyme that generates the peptidyl aldehyde precursor to the lysine-derived cross-linkages in elastin and collagen. The nature of a carbonyl moiety in purified bovine aortic lysyl oxidase was explored in the present study. A PLP dinitrophenylhydrazone could not be isolated from lysyl oxidase, although corresponding preparations of aspartate aminotransferase, a PLP-dependent enzyme, yielded this derivative, as revealed by h.p.l.c. Analysis of lysyl oxidase for PLP after reduction of the enzyme by NaBH4, a procedure that converts PLP-protein aldimines into stable 5'-phosphopyridoxyl functions, also proved negative in tests using monoclonal antibody specific for this epitope. Lysyl oxidase was competitively inhibited by phenylhydrazine, and inhibition became irreversible with time at 37 degrees C, displaying a first-order inactivation rate constant of 0.4 min-1 and KI of 1 microM. [14C]Phenylhydrazine was covalently incorporated into the enzyme in a manner that was prevented by prior modification of the enzyme with beta-aminopropionitrile, a specific active-site inhibitor, and which correlated with functional active-site content. The chemical stability of the enzyme-bound phenylhydrazine exceeded that expected of linkages between PLP and proteins. The absorption spectrum of the phenylhydrazine derivative of lysyl oxidase was clearly distinct from that of the phenylhydrazone of PLP. It is concluded that lysyl oxidase contains a carbonyl cofactor that is not identical with PLP and that is bound to the enzyme by a stable chemical bond.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-6021
1470-8728
DOI:10.1042/bj2350597