High-Efficiency Switched-Capacitor DC-DC Converter with Three Decades of Load Current Range Using Adaptively-Biased PFM
A fully-integrated switched-capacitor (SC) DC-DC converter that steps down 2.0 V to 0.9 V with a peak efficiency of 80% is implemented in a 0.18 μ m CMOS process. An ultra-low-power voltage-controlled oscillator that generates a wide range of switching frequencies is proposed to extend battery runti...
Saved in:
Published in | Journal of low power electronics and applications Vol. 10; no. 1; p. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A fully-integrated switched-capacitor (SC) DC-DC converter that steps down 2.0 V to 0.9 V with a peak efficiency of 80% is implemented in a 0.18 μ m CMOS process. An ultra-low-power voltage-controlled oscillator that generates a wide range of switching frequencies is proposed to extend battery runtime. An efficiency >70% for load currents in the range of 12 μ A to 17.8 mA is achieved by implementing a novel adaptively-biased pulse frequency modulation (ABPFM) technique in the controller. A symmetric charge-discharge topology with two-phase time interleaving is used as a power stage to reduce the output voltage ripple to <72 mV over the entire load current range. |
---|---|
ISSN: | 2079-9268 2079-9268 |
DOI: | 10.3390/jlpea10010005 |