Temperature Forecasting Correction Based on Operational GRAPES-3km Model Using Machine Learning Methods
Postprocess correction is essential to improving the model forecasting result, in which machine learning methods play more and more important roles. In this study, three machine learning (ML) methods of Linear Regression, LSTM-FCN and LightGBM were used to carry out the correction of temperature for...
Saved in:
Published in | Atmosphere Vol. 13; no. 2; p. 362 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Postprocess correction is essential to improving the model forecasting result, in which machine learning methods play more and more important roles. In this study, three machine learning (ML) methods of Linear Regression, LSTM-FCN and LightGBM were used to carry out the correction of temperature forecasting of an operational high-resolution model GRAPES-3km. The input parameters include 2 m temperature, relative humidity, local pressure and wind speed forecasting and observation data in Shaanxi province of China from 1 January 2019 to 31 December 2020. The dataset from September 2018 was used for model evaluation using the metrics of root mean square error (RMSE), average absolute error (MAE) and coefficient of determination (R2). All three machine learning methods perform very well in correcting the temperature forecast of GRAPES-3km model. The RMSE decreased by 33%, 32% and 40%, respectively, the MAE decreased by 33%, 34% and 41%, respectively, the R2 increased by 21.4%, 21.5% and 25.2%, respectively. Among the three methods, LightGBM performed the best with the forecast accuracy rate reaching above 84%. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos13020362 |