Transcriptome Sequencing Analysis of Sex-Related Genes in the Gonads of Mytilus unguiculatus
In the cultivation of Mytilus unguiculatus, the broodstock are shade-dried to stimulate sperm and egg production. To identify the functional genes affecting gonad development in M. unguiculatus, the transcriptome of gonads in mussels stimulated by shade-drying and those not stimulated were compared....
Saved in:
Published in | Fishes Vol. 8; no. 9; p. 456 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the cultivation of Mytilus unguiculatus, the broodstock are shade-dried to stimulate sperm and egg production. To identify the functional genes affecting gonad development in M. unguiculatus, the transcriptome of gonads in mussels stimulated by shade-drying and those not stimulated were compared. Differential gene expression analysis revealed that there were 22 differentially expressed genes (DEGs) in the testis and 70 DEGs in the ovary among the experimental groups. KEGG enrichment analysis identified a total of 11 pathways that might be related to environmental stimuli affecting gonadal development. Nicotinic acetylcholine receptors (AChRs), the cholecystokinin A receptor (CCKAR), hypocretin (orexin) receptor 2 (HCRTR2), and gamma-aminobutyric acid type B receptor (GABBR) were highly expressed in the neuroactive ligand-receptor interaction pathway, indicating that these genes might be involved in the transduction of environmental information that stimulates gonadal development. Meanwhile, nuclear receptor co-repressor 2 (NCoR2) was highly expressed in the notch signaling pathway, indicating that NCoR2 might be involved in the regulation of gonad development. To validate the transcriptome data, we selected five DEGs in the KEGG signaling pathway, including AChRs, CCKAR, HCRTR2, GABAB, and NCoR2, for real-time quantitative PCR (RT-qPCR), which produced results consistent with the RNA-Seq data. The transcriptome analysis and gene pathway identification in this study have enhanced our comprehension of the reproductive mechanisms in M. unguiculatus. |
---|---|
ISSN: | 2410-3888 2410-3888 |
DOI: | 10.3390/fishes8090456 |