Implementation of exact grain-boundary geometry into a 3-D Monte-Carlo (Potts) model for microstructure evolution
A three-dimensional Monte-Carlo (Potts) model was modified to incorporate the effect of grain-boundary inclination on boundary mobility. For this purpose, a straightforward geometric construction was developed to determine the local orientation of the grain-boundary plane. The combined effects of gr...
Saved in:
Published in | Acta materialia Vol. 57; no. 9; pp. 2834 - 2844 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A three-dimensional Monte-Carlo (Potts) model was modified to incorporate the effect of grain-boundary inclination on boundary mobility. For this purpose, a straightforward geometric construction was developed to determine the local orientation of the grain-boundary plane. The combined effects of grain-boundary plane and misorientation on the effective grain-boundary mobility were incorporated into the Monte-Carlo code using the definition of the tilt–twist component. The modified code was validated by simulating grain growth in microstructures comprising equiaxed or elongated grains as well as the static recrystallization of a microstructure of deformed (elongated) grains. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2009.02.034 |