Facile Synthesis of MXene/MnO2 Nanocomposites for Efficient Removal of Radionuclide Uranium
The efficient removal of radionuclide uranium is crucial for sustainable nuclear energy and achieving a zero-carbon loop. In this study, we synthesized MXene/MnO2 nanocomposites and evaluated their ability to adsorb and reduce uranium. The results showed that the nanocomposites achieved a uranium re...
Saved in:
Published in | Crystals (Basel) Vol. 13; no. 5; p. 804 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
11.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The efficient removal of radionuclide uranium is crucial for sustainable nuclear energy and achieving a zero-carbon loop. In this study, we synthesized MXene/MnO2 nanocomposites and evaluated their ability to adsorb and reduce uranium. The results showed that the nanocomposites achieved a uranium removal rate of 99% and an adsorption capacity of 696 mg/g. Adsorption experiments were conducted under different conditions, including pH, cation, anion, and humic acid, and the uranium removal rate by the composite remained high at 91%, 70%, and 60% under the influence of pH = 4.97, 1.0 mM CaCl2, and 20 mg/L humic acid, respectively. The XRD and SEM analyses revealed that the uranium element was removed by the reduction and fixation of the composite material. These findings indicate that the MXene/MnO2 composite is an effective adsorption cleaning agent for the purification of radioactive nuclear wastewater, which has significant implications for pollution control. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst13050804 |