Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LC...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 28; no. 20; p. 205501
Main Authors Bag, Souvik, Rathi, Keerti, Pal, Kaushik
Format Journal Article
LanguageEnglish
Published England IOP Publishing 19.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.
Bibliography:NANO-112654.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/aa66b6