Selective Relay-Activation for Conditional DF Relaying

This paper considers a conditional decode-and-forward (DF) based cooperative system where a source (S) with multiple (M) antennas transmits information to a single-antenna destination (D) with the help of multiple (L ≤ M - 1) single-antenna relays ({R i }). The optimal transmit weighting vector at t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 62; no. 3; pp. 888 - 899
Main Authors Song, S. H., Zhang, Q. T., Letaief, K. B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers a conditional decode-and-forward (DF) based cooperative system where a source (S) with multiple (M) antennas transmits information to a single-antenna destination (D) with the help of multiple (L ≤ M - 1) single-antenna relays ({R i }). The optimal transmit weighting vector at the source is not available in the literature due to the non-linear conditional DF operation, which renders the problem non-convex. To solve this problem, we first show that the optimal transmit vector for the single-relay system can be determined by comparing the S-D beamformer (maximum-ratio-transmit beamforming vector for the S-D link) with the one that utilizes "just sufficient" energy to activate the relay-link. However, it is difficult to directly apply the above idea to the multi-relay system, due to the fact that the S-R and S-D links are normally not orthogonal. To tackle this issue, we propose to utilize basis functions that are orthogonal to the S-D and S-R links, respectively, which enables the activating of one S-R link without considering the S-D link and the other S-R links. We then apply the new basis functions to the multi-relay system and propose a selective relay-activation algorithm, where the optimal solution is obtained by comparing the S-D beamformer with schemes that selectively activate different combinations of the relay-links. The selective relay-activation algorithm is different from the conventional water-filling in the sense that the energy is filled to discrete levels to activate the S-R links, a unique feature arising from the conditional DF operation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2014.020314.130082