Kinematic and dynamic analysis of the McPherson suspension with a planar quarter-car model
McPherson suspension modelling poses a challenging problem due to its nonlinear asymmetric behaviour. The paper proposes a planar quarter-car analytical model that not only considers vertical motion of the sprung mass (chassis) but also: (i) rotation and translation for the unsprung mass (wheel asse...
Saved in:
Published in | Vehicle system dynamics Vol. 51; no. 9; pp. 1422 - 1437 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Colchester
Taylor & Francis
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | McPherson suspension modelling poses a challenging problem due to its nonlinear asymmetric behaviour. The paper proposes a planar quarter-car analytical model that not only considers vertical motion of the sprung mass (chassis) but also: (i) rotation and translation for the unsprung mass (wheel assembly), (ii) wheel mass and its inertia moment about the longitudinal axis, and (iii) tyre damping and lateral deflection. This kinematic-dynamic model offers a solution to two important shortcomings of the conventional quarter-car model: it accounts for geometry and for tyre modelling. The paper offers a systematic development of the planar model as well as the complete set of mathematical equations. This analytical model can be suitable for fast computation in hardware-in-the-loop applications. Furthermore, a reproducible Simulink implementation is given. The model has been compared with a realistic Adams/View simulation to analyse dynamic behaviour for the jounce and rebound motion of the wheel and two relevant kinematic parameters: camber angle and track width variation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0042-3114 1744-5159 |
DOI: | 10.1080/00423114.2013.804937 |