Rapid Growth of High-Quality Rutile TiO2 Single Crystals through a Laser Floating Zone Method
The rapid growth of rutile TiO2 single crystals through a laser floating zone (LFZ) method was demonstrated. LFZ has a higher power density, which is suitable for the growth of TiO2 crystals with a high melting point. By optimizing the crystal growth parameters, including the growth rate, gas atmosp...
Saved in:
Published in | Crystals (Basel) Vol. 12; no. 12; p. 1789 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The rapid growth of rutile TiO2 single crystals through a laser floating zone (LFZ) method was demonstrated. LFZ has a higher power density, which is suitable for the growth of TiO2 crystals with a high melting point. By optimizing the crystal growth parameters, including the growth rate, gas atmosphere, and rotation rate, the crystals could achieve their largest size of φ 9 mm × 25 mm, with a growth cycle of 12 h, and no cracks appeared. The properties of the obtained crystals were close to those of the crystals grown using other schemes, with a whole transmission range of 0.41–6.56 μm, thermal expansion coefficient of 9.92 × 10−6/K, and laser damage threshold of 1.44 GW/cm2. The achieved results indicated that the crystals have high quality and good integrity when grown using LFZ and also imply a new choice for the rapid growth of rutile TiO2 single crystals. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12121789 |