Tunable Schottky barrier in InTe/graphene van der Waals heterostructure

The structures and electronic properties of InTe/graphene van der Waals heterostructures are systematically investigated using the first-principles calculations. The electronic properties of InTe monolayer and graphene are well preserved respectively and the bandgap energy of graphene is opened to 3...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 31; no. 33; p. 335201
Main Authors Li, Hengheng, Zhou, Zhongpo, Wang, Haiying
Format Journal Article
LanguageEnglish
Published England IOP Publishing 14.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structures and electronic properties of InTe/graphene van der Waals heterostructures are systematically investigated using the first-principles calculations. The electronic properties of InTe monolayer and graphene are well preserved respectively and the bandgap energy of graphene is opened to 36.5 meV in the InTe/graphene heterostructure. An n-type Schottky contact is formed in InTe/graphene heterostructure at the equilibrium state. There is a transformation between n-type and p-type Schottky contact when the interlayer distance is smaller than 3.56 Å or the applied electric field is larger than −0.06 V Å−1. In addition, the Schottky contact converts to Ohmic contact when the applied vertical electric field is larger than 0.11 V Å−1 or smaller than −0.13 V Å−1.
AbstractList The structures and electronic properties of InTe/graphene van der Waals heterostructures are systematically investigated using the first-principles calculations. The electronic properties of InTe monolayer and graphene are well preserved respectively and the bandgap energy of graphene is opened to 36.5 meV in the InTe/graphene heterostructure. An n-type Schottky contact is formed in InTe/graphene heterostructure at the equilibrium state. There is a transformation between n-type and p-type Schottky contact when the interlayer distance is smaller than 3.56 Å or the applied electric field is larger than -0.06 V/Å. In addition, the Schottky contact converts to Ohmic contact when the applied vertical electric field is larger than 0.11 V/Å or smaller than -0.13 V/Å.
The structures and electronic properties of InTe/graphene van der Waals heterostructures are systematically investigated using the first-principles calculations. The electronic properties of InTe monolayer and graphene are well preserved respectively and the bandgap energy of graphene is opened to 36.5 meV in the InTe/graphene heterostructure. An n-type Schottky contact is formed in InTe/graphene heterostructure at the equilibrium state. There is a transformation between n-type and p-type Schottky contact when the interlayer distance is smaller than 3.56 Å or the applied electric field is larger than −0.06 V Å−1. In addition, the Schottky contact converts to Ohmic contact when the applied vertical electric field is larger than 0.11 V Å−1 or smaller than −0.13 V Å−1.
Author Wang, Haiying
Li, Hengheng
Zhou, Zhongpo
Author_xml – sequence: 1
  givenname: Hengheng
  orcidid: 0000-0003-4432-4632
  surname: Li
  fullname: Li, Hengheng
  organization: Henan Key Laboratory of Photovoltaic Materials, and School of Physics, Henan Normal University , Xinxiang 453007, People's Republic of China
– sequence: 2
  givenname: Zhongpo
  orcidid: 0000-0002-9448-9286
  surname: Zhou
  fullname: Zhou, Zhongpo
  email: zpzhou@htu.edu.cn
  organization: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University , Wuhan 430072, People's Republic of China
– sequence: 3
  givenname: Haiying
  orcidid: 0000-0002-5691-2565
  surname: Wang
  fullname: Wang, Haiying
  organization: Henan Key Laboratory of Photovoltaic Materials, and School of Physics, Henan Normal University , Xinxiang 453007, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32348976$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9LwzAUx4NM3A-9e5IeFax7SZomO8rQORA8OPEY0vbFdW5pTVth_70ZmzspBAIvn-97L58h6bnKISGXFO4oKDWmPKVxKpgam0yhlCdkcCz1yAAmQsZJopI-GTbNCoBSxegZ6XPGEzWR6YDMFp0z2Rqj13xZte3nNsqM9yX6qHTR3C1w_OFNvUSH0bdxUREe3o1ZN9ESW_RV0_oubzuP5-TUhjJeHO4ReXt8WEyf4ueX2Xx6_xznXEIbq4wyybnITZHYNDNgLfBUCmZRJiIXtOAGQCQ8TSkHmcmsAKksMypn1ILgI3K971v76qvDptWbsslxvTYOq67RjE9SJSZKQkBhj-Zhz8aj1bUvN8ZvNQW906d3rvTOld7rC5GrQ_cu22BxDPz6CsDNHiirWq-qzrvwWe2MqzSnmvNwBAOq68IG9vYP9t_ZP3cZh8E
CODEN NNOTER
CitedBy_id crossref_primary_10_1016_j_ssc_2022_114770
crossref_primary_10_1039_D1CP01292D
crossref_primary_10_1088_1674_1056_ac5c3b
crossref_primary_10_1039_D2RA07949F
crossref_primary_10_1016_j_surfin_2022_102604
crossref_primary_10_1088_1361_648X_ac7996
crossref_primary_10_1088_1361_648X_acc70f
crossref_primary_10_1088_1361_6641_acbb1e
crossref_primary_10_1103_PhysRevB_106_165301
crossref_primary_10_1007_s10853_023_08273_1
crossref_primary_10_1039_D2CP00228K
crossref_primary_10_3390_nano10091887
crossref_primary_10_1088_1361_6528_ac70e6
crossref_primary_10_1016_j_mtcomm_2024_108670
crossref_primary_10_1088_1361_6528_ac800d
Cites_doi 10.1039/C7CY00090A
10.1038/nphys2102
10.1021/nl200758b
10.1021/nn300889c
10.1103/PhysRevB.50.17953
10.1126/science.1239501
10.1002/adfm.201503645
10.1039/C8TC01533C
10.1103/PhysRevLett.114.066803
10.1039/C8CP02190B
10.1126/science.1102896
10.1021/acs.nanolett.8b04802
10.1038/s41598-019-40877-z
10.1021/acsnano.5b05556
10.1103/PhysRev.71.717
10.1039/C3NR03677D
10.1021/am402686r
10.1021/nn800459e
10.1038/natrevmats.2016.42
10.1002/jcc.20495
10.1039/C7RA01134B
10.1039/C5NR00400D
10.1038/nature12385
10.1126/science.1137201
10.1002/adma.201602960
10.1021/acsomega.9b01752
10.1021/acsnano.5b01943
10.1039/C2RA22664B
10.1002/adfm.201805491
10.1038/nature26160
10.1002/adma.201500889
10.1002/adma.201504514
10.1063/1.1564060
10.1103/PhysRevLett.100.206803
10.1021/acs.jpcc.9b03359
10.1021/acs.jpcc.8b07692
10.1002/adma.201201361
10.1039/C8CS00324F
10.1039/C8TA01019F
10.1038/nmat3064
10.1103/PhysRevB.96.035407
10.1039/C7CS00229G
10.1016/j.apsusc.2019.143629
10.1103/PhysRevB.95.115409
10.1038/s41563-019-0601-3
10.1038/s41586-019-1304-2
10.1021/acs.jpcc.9b05581
10.1103/PhysRevLett.77.3865
10.3390/nano9060865
10.1021/nl500817g
10.1021/acsami.8b07138
10.1088/0953-8984/21/39/395502
10.1039/C9CP04666F
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
2020 IOP Publishing Ltd.
Copyright_xml – notice: 2020 IOP Publishing Ltd
– notice: 2020 IOP Publishing Ltd.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1088/1361-6528/ab8e77
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Tunable Schottky barrier in InTe/graphene van der Waals heterostructure
EISSN 1361-6528
EndPage 335201
ExternalDocumentID 10_1088_1361_6528_ab8e77
32348976
nanoab8e77
Genre Journal Article
GrantInformation_xml – fundername: The China Scholarship Council
  grantid: 201608410308 and 201608410415
– fundername: National Natural Science Foundation of China
  grantid: 11404100 and11874141
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: the surplus foundation for vertical scientific research projects of Henan Normal University
  grantid: 5201029120301
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c370t-8b127335cad4f6ba0ff036752fe745c51d3a00543661307b7bd078f2a8c21f053
IEDL.DBID IOP
ISSN 0957-4484
IngestDate Fri Jun 28 06:23:48 EDT 2024
Fri Aug 23 00:55:19 EDT 2024
Sat Sep 28 08:27:41 EDT 2024
Wed Aug 21 03:34:39 EDT 2024
Thu Jan 07 15:20:44 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Electric field
InTe
Graphene
vdW Heterostructure
Layer distance
Schottky barrier
Language English
License 2020 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-8b127335cad4f6ba0ff036752fe745c51d3a00543661307b7bd078f2a8c21f053
Notes NANO-124771.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4432-4632
0000-0002-5691-2565
0000-0002-9448-9286
PMID 32348976
PQID 2396859870
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2396859870
crossref_primary_10_1088_1361_6528_ab8e77
iop_journals_10_1088_1361_6528_ab8e77
pubmed_primary_32348976
PublicationCentury 2000
PublicationDate 2020-08-14
PublicationDateYYYYMMDD 2020-08-14
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev Nano
PublicationTitleAlternate Nanotechnology
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
47
48
49
Li H (42) 2019; 30
50
51
52
53
10
54
11
55
12
56
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
Zhou B (45) 2019; 32
24
25
26
27
28
29
Giannozzi P (46) 2009; 21
Si C (40) 2016; 4
30
31
32
33
34
35
36
37
38
39
41
43
References_xml – ident: 25
  doi: 10.1039/C7CY00090A
– ident: 12
  doi: 10.1038/nphys2102
– ident: 5
  doi: 10.1021/nl200758b
– ident: 21
  doi: 10.1021/nn300889c
– ident: 48
  doi: 10.1103/PhysRevB.50.17953
– ident: 1
  doi: 10.1126/science.1239501
– ident: 31
  doi: 10.1002/adfm.201503645
– ident: 23
  doi: 10.1039/C8TC01533C
– ident: 54
  doi: 10.1103/PhysRevLett.114.066803
– ident: 38
  doi: 10.1039/C8CP02190B
– ident: 3
  doi: 10.1126/science.1102896
– ident: 20
  doi: 10.1021/acs.nanolett.8b04802
– ident: 43
  doi: 10.1038/s41598-019-40877-z
– ident: 30
  doi: 10.1021/acsnano.5b05556
– ident: 56
  doi: 10.1103/PhysRev.71.717
– ident: 8
  doi: 10.1039/C3NR03677D
– volume: 32
  year: 2019
  ident: 45
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Zhou B
– ident: 6
  doi: 10.1021/am402686r
– ident: 11
  doi: 10.1021/nn800459e
– ident: 26
  doi: 10.1038/natrevmats.2016.42
– ident: 49
  doi: 10.1002/jcc.20495
– ident: 13
  doi: 10.1039/C7RA01134B
– ident: 36
  doi: 10.1039/C5NR00400D
– ident: 29
  doi: 10.1038/nature12385
– ident: 4
  doi: 10.1126/science.1137201
– ident: 32
  doi: 10.1002/adma.201602960
– ident: 55
  doi: 10.1021/acsomega.9b01752
– ident: 41
  doi: 10.1021/acsnano.5b01943
– ident: 52
  doi: 10.1039/C2RA22664B
– ident: 34
  doi: 10.1002/adfm.201805491
– volume: 4
  year: 2016
  ident: 40
  publication-title: 2D Mater.
  contributor:
    fullname: Si C
– volume: 30
  issn: 0957-4484
  year: 2019
  ident: 42
  publication-title: Nanotechnology
  contributor:
    fullname: Li H
– ident: 10
  doi: 10.1038/nature26160
– ident: 35
  doi: 10.1002/adma.201500889
– ident: 37
  doi: 10.1002/adma.201504514
– ident: 50
  doi: 10.1063/1.1564060
– ident: 9
  doi: 10.1103/PhysRevLett.100.206803
– ident: 51
  doi: 10.1021/acs.jpcc.9b03359
– ident: 15
  doi: 10.1021/acs.jpcc.8b07692
– ident: 19
  doi: 10.1002/adma.201201361
– ident: 2
  doi: 10.1039/C8CS00324F
– ident: 27
  doi: 10.1039/C8TA01019F
– ident: 7
  doi: 10.1038/nmat3064
– ident: 39
  doi: 10.1103/PhysRevB.96.035407
– ident: 14
  doi: 10.1039/C7CS00229G
– ident: 28
  doi: 10.1016/j.apsusc.2019.143629
– ident: 16
  doi: 10.1103/PhysRevB.95.115409
– ident: 53
  doi: 10.1038/s41563-019-0601-3
– ident: 33
  doi: 10.1038/s41586-019-1304-2
– ident: 22
  doi: 10.1021/acs.jpcc.9b05581
– ident: 47
  doi: 10.1103/PhysRevLett.77.3865
– ident: 17
  doi: 10.3390/nano9060865
– ident: 18
  doi: 10.1021/nl500817g
– ident: 44
  doi: 10.1021/acsami.8b07138
– volume: 21
  issn: 0953-8984
  year: 2009
  ident: 46
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
  contributor:
    fullname: Giannozzi P
– ident: 24
  doi: 10.1039/C9CP04666F
SSID ssj0011821
Score 2.4877965
Snippet The structures and electronic properties of InTe/graphene van der Waals heterostructures are systematically investigated using the first-principles...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 335201
SubjectTerms Applied electric field
graphene
InTe
Layer distance
Schottky barrier
vdW heterostructure
Title Tunable Schottky barrier in InTe/graphene van der Waals heterostructure
URI https://iopscience.iop.org/article/10.1088/1361-6528/ab8e77
https://www.ncbi.nlm.nih.gov/pubmed/32348976
https://search.proquest.com/docview/2396859870
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4AxkQfUEH0FM1q4IGH3t3-6m7jEyEimAg-HJEHks1uuxsNSXvheg_y1zPb7V2ECDG-Nemk3c7O7HyTmfkKsEND4XnuGRqvcJigiHFWsErghnCMZ7n0XsbZ4W8n-dGZ-Houz1fg03IWppn2R_8QLxNRcFJh3xCnR5TnNMsl0yPrtFdqFR5xdJWYeR2ffl-WEBA400S0pzLMQURfo_zbE27FpFV87_1wsws7h8_gYrHg1G1yOZy3blhe3-Fy_M8veg7rPRwl-0n0Baz4egOe_kFSuAGPuybRcrYJXybzbtKKROrOtr38TZy9in-8I79qclxP_Kijv8bTkyA-JxXe-GHRvMnP2HPTJKra-ZV_CWeHnycHR1n_I4as5GrcZtpRRDlclrYSIXd2HAIGPiVZ8ErIUtKK24j9eB6zEeWUqxB5BGZ1yWhAN9-Ctbqp_WsguqCl4rSipVUiqKpwTKOUoK5jJuMD2FtshZkmvg3T1cm1NlFNJqrJJDUNYBc1anqnmz0g9_GWXG3rxnBqODdx4mxMzbQKA_iw2HKDHhbLJrb2zXxmGC9yLQs82AbwKtnCcmmccaER0b35x6W8hScsJuyRU1dswxoq3r9DVNO695313gDJjeuG
link.rule.ids 315,783,787,27936,27937,38877,53854
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlA5tFCgbClgEBw4ZHf9ip0jApYuj9LDVvRm7MRWq0rJqps9lF_fcZytKAKExC3SWllnHp5vNDOfAV7SUHiee4bGKxwmKGKcFawSqBCO8SyX3ss4O_zlIN8_Eh-P5XF_z2k3C9PM-6N_iI-JKDiJsG-I0yPKc5rlkumRddorNZpXYQ1uoufKSJ4__Xp4VUZA8EwT2Z7KMA8RfZ3yd2-5FpfW8L__DDm70DPZgu-rTaeOk7PhsnXD8scvfI7_8VV3YbOHpeRNWn4Pbvh6G-78RFa4Dbe6ZtFycR8-zJbdxBWJFJ5te3ZBnD2PN9-R05pM65kfdTTYeIoSxOmkwh--WTRzchJ7b5pEWbs89w_gaPJ-9nY_6y9kyEquxm2mHUW0w2VpKxFyZ8chYABUkgWvhCwlrbiNGJDnMStRTrkKEUhgVpeMBnT3h7BeN7V_BEQXtFScVrS0SgRVFY5pXCWo6xjK-ABer9Rh5ol3w3T1cq1NFJWJojJJVAN4hVI1vfMt_rLuxbV1ta0bw6nh3MTJszE1KPMBPF-p3aCnxfKJrX2zXBjGi1zLAg-4Aewke7jaGmdcaER2u_-4lWdw-_DdxHyeHnx6DBss5vCRZlfswTrqwD9BoNO6p50xXwK2EfDm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Schottky+barrier+in+InTe%2Fgraphene+van+der+Waals+heterostructure&rft.jtitle=Nanotechnology&rft.au=Li%2C+Hengheng&rft.au=Zhou%2C+Zhongpo&rft.au=Wang%2C+Haiying&rft.date=2020-08-14&rft.eissn=1361-6528&rft_id=info:doi/10.1088%2F1361-6528%2Fab8e77&rft_id=info%3Apmid%2F32348976&rft.externalDocID=32348976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon