Defective signal-transduction pathways in T-cells from autoimmune MRL-lpr/lpr mice are associated with increased polyamine concentrations

We previously reported that difluoromethylornithine (DFMO), an inhibitor of polyamine biosynthesis, exerted significant beneficial effects on the lifespan and disease expression of MRL-lpr/lpr mice, which spontaneously develop a lupus-like syndrome. Polyamine levels in splenic T-cells of MRL-lpr/lpr...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 311 ( Pt 1); no. 1; pp. 175 - 182
Main Authors Thomas, T J, Gunnia, U B, Seibold, J R, Thomas, T
Format Journal Article
LanguageEnglish
Published England 01.10.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We previously reported that difluoromethylornithine (DFMO), an inhibitor of polyamine biosynthesis, exerted significant beneficial effects on the lifespan and disease expression of MRL-lpr/lpr mice, which spontaneously develop a lupus-like syndrome. Polyamine levels in splenic T-cells of MRL-lpr/lpr mice were significantly higher than those of Balb/c mice. In the present investigation, we examined the role of endogenous polyamines in transmembrane Ca2+ influx, generation of InsP3 and tyrosine phosphorylation of the p56lck protein in concanavalin A-stimulated splenic T-cells. Cytosolic free calcium concentrations ([Ca2+]i) in concanavalin A-stimulated T-cells of MRL-lpr/lpr and Balb/c mice were 250 +/- 25 and 450 +/- 42 nM respectively. Treatment of MRL-lpr/lpr mice with DFMO increased [Ca2+]i to 360 +/- 30 nM (P < 0.05). InsP3 levels of concanavalin A-stimulated MRL-lpr/lpr splenic T-cells were only 20% higher than those of unstimulated controls, whereas those of Balb/c T-cells were 90% higher. DFMO treatment increased InsP3 levels in concanavalin A-treated MRL-lpr/lpr T-cells to 67%. Western-blot analysis showed a 7-fold higher level of p56lck phosphorylation of MRL-lpr/lpr splenic T-cells than that of Balb/c mice. DFMO treatment reduced tyrosine phosphorylation of p56lck of MRL-lpr/lpr mice significantly (P < 0.001). Two-colour flow-cytometric analysis revealed no significant difference in the CD4+/CD8+ ratio in splenic T-cells of MRL-lpr/lpr mice after DFMO treatment. Polyamine levels in splenocytes were significantly reduced by DFMO treatment. These data show that DFMO treatment could alter signal-transduction pathways of splenic T-cells of MRL-lpr/lpr mice. Increased levels of polyamines in T-cells of untreated lpr mice contribute to defective signal-transduction pathways and the pathogenesis of lupus-like symptoms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3110175