Black Soldier Fly (Hermetia illucens) Larvae Meal: A Sustainable Alternative to Fish Meal Proven to Promote Growth and Immunity in Koi Carp (Cyprinus carpio var. koi)

Insect meal has shown promise as a potentially sustainable source of nutrients for aquafeeds, offering an alternative to expensive and ecologically undesirable ingredients, in the context of population explosion and climate change. Despite this promising outlook, its effects on fish growth and immun...

Full description

Saved in:
Bibliographic Details
Published inFishes Vol. 9; no. 2; p. 53
Main Authors Linh, Nguyen Vu, Wannavijit, Supreya, Tayyamath, Khambou, Dinh-Hung, Nguyen, Nititanarapee, Thitikorn, Sumon, Md Afsar Ahmed, Srinual, Orranee, Permpoonpattana, Patima, Doan, Hien, Brown, Christopher L.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Insect meal has shown promise as a potentially sustainable source of nutrients for aquafeeds, offering an alternative to expensive and ecologically undesirable ingredients, in the context of population explosion and climate change. Despite this promising outlook, its effects on fish growth and immune responses remain to be thoroughly investigated. Our scientific goal was to experimentally test responses to replacements of the fish meal with a protein source derived from black soldier fly larvae meal (BSFLM). Possible impacts on growth, immunological response, and the expression of selected immune-system related genes were evaluated in Koi carp (Cyprinus carpio var. koi) using a biofloc culture system. Three hundred fish (20.0 ± 0.2 g) were allocated into five groups: a control group receiving a basal diet containing 0 g kg−1 BSFLM and four experimental groups in which fish meal was replaced with 50, 100, 150, and 200 g kg−1 BSFLM for eight weeks. After 4 weeks of feeding, there were no statistically significant differences in specific growth rate (SGR), feed conversion ratio (FCR), and survival rate between fish fed BSFLM-enriched diets at 50, 100, 150 g kg−1 and a control (0 g kg−1 BSFLM) diet. However, fish fed 200 g kg−1 BSFLM showed significantly improved weight gain (WG) and SGR compared to the control after 4 weeks; this difference persisted through 8 weeks (p < 0.05). After eight weeks, there was a moderate to weak negative linear regression shown in FCR (r = 0.470) and SR (r = 0.384), respectively, with the BSFLM levels, but significant and highly correlated linear relationships were observed in WG (r = 0.917) and SGR (r = 0.912). Immunological response analysis showed slight changes in lysozyme and peroxidase levels by replacing fish meal with BSFLM, but these apparent differences were not significantly related to experimental diets. Interestingly, mRNA transcripts of immune-related genes (TNF-α, TGF-β, IL1, IL10, and hsp70) were upregulated in the groups receiving higher amounts of BSFLM, with statistically significant differences observed in certain comparisons. Our findings reveal that fish meal can be effectively replaced by BSFLM, and that this not only has a positive effect on immune-related gene expression in Koi carp, but also on growth rate, pointing to the future potential role of BSFLM as an alternative fish meal protein in aquafeed formulation.
ISSN:2410-3888
2410-3888
DOI:10.3390/fishes9020053