Modelling load–displacement response of driven piles in cohesionless soils under tensile loading

A new methodology for deriving the uplift load–displacement response of long driven piles in cohesionless soils is proposed. This method accounts for the effects of the friction fatigue processes during pile driving and the existence of locked-in residual stresses at the end of pile driving before c...

Full description

Saved in:
Bibliographic Details
Published inComputers and geotechnics Vol. 32; no. 8; pp. 578 - 586
Main Author Alawneh, Ahmed Shlash
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new methodology for deriving the uplift load–displacement response of long driven piles in cohesionless soils is proposed. This method accounts for the effects of the friction fatigue processes during pile driving and the existence of locked-in residual stresses at the end of pile driving before commencing the pile load test. A hyperbolic formulation is utilized to simulate the nonlinear load transfer curves (the so-called t– z curves). The utility of this technique is demonstrated for a field pullout load test on a driven pile in sand. Predicted and measured load–displacement curves showed good agreement, indicating that this approach yields reasonable results as long as representative input parameters are employed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0266-352X
1873-7633
DOI:10.1016/j.compgeo.2005.11.003