Comparison of Two Kinds of Magnetic Nanoparticles In Vivo and In Vitro

This study compared a new type of polysaccharide-coated magnetic nanoparticles (in which the polysaccharide is derived from Angelica sinensis) with the dextran magnetic nanoparticles in terms of preparation, biocompatibility and tissue distribution in vivo and in vitro in order to examine the potent...

Full description

Saved in:
Bibliographic Details
Published inJournal of Huazhong University of Science and Technology. Medical sciences Vol. 32; no. 3; pp. 444 - 450
Main Author 汪柳 张玉 李石军 王玉娟 王凯平
Format Journal Article
LanguageEnglish
Published Heidelberg Huazhong University of Science and Technology 01.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study compared a new type of polysaccharide-coated magnetic nanoparticles (in which the polysaccharide is derived from Angelica sinensis) with the dextran magnetic nanoparticles in terms of preparation, biocompatibility and tissue distribution in vivo and in vitro in order to examine the potential application of Angelica polysaccharide as a novel carrier in magnetic drug targeting (MDT). Magnetic nanoparticles were prepared by chemical co-precipitation. Their physical and chemical properties were determined by using the transmission electron microscope (TEM), laser particle size analyzer (DLS) and vibrating sample magnetometer (VSM), and their purity and structure by using X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). The atomic absorption spectrometric method was performed for quantification of the iron content in different tissues. Histological sections were stained by Prussian blue staining to observe the disposition of magnetic nanoparticles in the liver and kidney. The results showed that both kinds of magnetic nanoparticles possessed small particle size, good dispersion and good magnetic properties. XRD showed the main component of the two magnetic nanoparticles was Fe3O4 crystals, and FTIR proved Fe3O4 was successfully coated by each polysaccharide, respectively. In vivo, Fe3O4-dextran accumulated in the liver, spleen and lung and Fe3O4-Angelica polysaccharide only in the spleen and lung. It was concluded that Angelica polysaccharide may be applied as a novel carrier in the preparation of magnetic nanoparticles.
Bibliography:Angelica polysaccharide dextran magnetic nanoparticles
42-1679/R
Liu WANG , Yu ZHANG , Shijun LI ,Yujuan WANG , Kaiping WANG ( 1Department of Pharmacy, Union Hospital, Tong]i Medical College, Huazhong University of Science and Technology, Wuhan 430022, China 2Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tong/i Medical College, Huazhong University of Science and Technology, Wuhan 430030, China)
This study compared a new type of polysaccharide-coated magnetic nanoparticles (in which the polysaccharide is derived from Angelica sinensis) with the dextran magnetic nanoparticles in terms of preparation, biocompatibility and tissue distribution in vivo and in vitro in order to examine the potential application of Angelica polysaccharide as a novel carrier in magnetic drug targeting (MDT). Magnetic nanoparticles were prepared by chemical co-precipitation. Their physical and chemical properties were determined by using the transmission electron microscope (TEM), laser particle size analyzer (DLS) and vibrating sample magnetometer (VSM), and their purity and structure by using X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). The atomic absorption spectrometric method was performed for quantification of the iron content in different tissues. Histological sections were stained by Prussian blue staining to observe the disposition of magnetic nanoparticles in the liver and kidney. The results showed that both kinds of magnetic nanoparticles possessed small particle size, good dispersion and good magnetic properties. XRD showed the main component of the two magnetic nanoparticles was Fe3O4 crystals, and FTIR proved Fe3O4 was successfully coated by each polysaccharide, respectively. In vivo, Fe3O4-dextran accumulated in the liver, spleen and lung and Fe3O4-Angelica polysaccharide only in the spleen and lung. It was concluded that Angelica polysaccharide may be applied as a novel carrier in the preparation of magnetic nanoparticles.
ISSN:1672-0733
1993-1352
DOI:10.1007/s11596-012-0077-8