Multi-classification approach for lung nodule detection and classification with proposed texture feature in X-ray images

Lung cancer is a widespread type of cancer around the world. It is, moreover, a lethal type of tumor. Nevertheless, analysis signifies that earlier recognition of lung cancer considerably develops the possibilities of survival. By deploying X-rays and Computed Tomography (CT) scans, radiologists cou...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 2; pp. 3497 - 3524
Main Authors VJ, Mary Jaya, S, Krishnakumar
Format Journal Article
LanguageEnglish
Published New York Springer US 2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lung cancer is a widespread type of cancer around the world. It is, moreover, a lethal type of tumor. Nevertheless, analysis signifies that earlier recognition of lung cancer considerably develops the possibilities of survival. By deploying X-rays and Computed Tomography (CT) scans, radiologists could identify hazardous nodules at an earlier period. However, when more citizens adopt these diagnoses, the workload rises for radiologists. Computer Assisted Diagnosis (CAD)-based detection systems can identify these nodules automatically and could assist radiologists in reducing their workloads. However, they result in lower sensitivity and a higher count of false positives. The proposed work introduces a new approach for Lung Nodule (LN) detection. At first, Histogram Equalization (HE) is done during pre-processing. As the next step, improved Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) based segmentation is done. Then, the characteristics, including “Gray Level Run-Length Matrix (GLRM), Gray Level Co-Occurrence Matrix (GLCM), and the proposed Local Vector Pattern (LVP),” are retrieved. These features are then categorized utilizing an optimized Convolutional Neural Network (CNN) and itdetectsnodule or non-nodule images. Subsequently, Long Short-Term Memory (LSTM) is deployed to categorize nodule types (benign, malignant, or normal). The CNN weights are fine-tuned by the Chaotic Population-based Beetle Swarm Algorithm (CP-BSA). Finally, the superiority of the proposed approach is confirmed across various measures. The developed approach has exhibited a high precision value of 0.9575 for the best case scenario, and high sensitivity value of 0.9646 for the mean case scenario. The superiority of the proposed approach is confirmed across various measures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-023-15281-5