Prediction of composition for stable half-Heusler phases from electronic-band-structure analyses

This report describes a procedure to predict the frequently occurring non-stoichiometry of the half-Heusler XYZ alloys (viz. deviations from the equiatomic 1:1:1 composition and the usually accompanied narrow homogeneity regions) from ab initio calculated electronic-band-structure characteristics. T...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 458; no. 1; pp. 47 - 60
Main Authors Offernes, L., Ravindran, P., Seim, C.W., Kjekshus, A.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 30.06.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This report describes a procedure to predict the frequently occurring non-stoichiometry of the half-Heusler XYZ alloys (viz. deviations from the equiatomic 1:1:1 composition and the usually accompanied narrow homogeneity regions) from ab initio calculated electronic-band-structure characteristics. The essential feature of this approach is to utilize the valence electron content (VEC) and the calculated electronic band structure to expose factors that according to rigid-band considerations should determine the possible deviations from 1:1:1 stoichiometry and direction of the stable solid-solution regions. These means have been used to predict the direction of equilibrium solid-solution regions for a number of ternary phase diagrams that comprise half-Heusler phases and the predictions have been tested with experimental data from literature and presently synthesized and microprobe analysed samples of NiTiSn, PtTiSn, CoTiSb, PtMnSb, NiMnSb, and CoMnSb. The predictions are made based on maximum band filling of bonding states identified through the crystal-orbital-Hamilton population (COHP) analysis and density-of-states (DOS) integration.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2007.04.038