Behaviors of Chromium in Coal-Fired Power Plants and Associated Atmospheric Emissions in Guizhou, Southwest China

Coal burning is a main concern for a range of atmospheric pollutants, including the environmentally sensitive element chromium (Cr). Cr migrates to the environment through stack emissions and can leach out from solid coal-burning byproducts, thereby causing adverse effects on the ecosystem. In this...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 11; no. 9; p. 951
Main Authors Li, Zhonggen, Wang, Qingfeng, Xiao, Zhongjiu, Fan, Leilei, Wang, Dan, Li, Xinyu, Du, Jia, Cheng, Junwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coal burning is a main concern for a range of atmospheric pollutants, including the environmentally sensitive element chromium (Cr). Cr migrates to the environment through stack emissions and can leach out from solid coal-burning byproducts, thereby causing adverse effects on the ecosystem. In this study, atmospheric emissions of Cr from six coal-fired power plants (CFPPs), as well as the distribution of Cr inside these CFPPs in Guizhou Province, Southwest China, were investigated. Among the six CFPPs, one was a circulating fluidized bed boiler and the others were pulverized coal boilers. The results showed that Cr in the feed fuel of these CFPPs ranged from 39.5 to 101.5 mg·kg−1 (average: 68.0 ± 24.8 mg·kg−1) and was approximately four times higher than the national and global average. Cr in the feed fuel correlated significantly with the ash yield, demonstrating that Cr in coal is closely associated with ash-forming minerals. After the coal combustion and the treatment by different air pollution control devices, most Cr (>92%) in the installation was retained in the captured fly ash and bottom ash, with less as gypsum (0.69–7.94%); eventually, only 0.01–0.03% of Cr was emitted into the atmosphere with a concentration of 1.4–2.2 μg·Nm−3. The atmospheric emission factors of Cr for these utility boilers were as low as 14.86 ± 3.62 mg Cr·t−1 coal, 7.72 ± 2.53 μg Cr (kW·h)−1, and 0.70 ± 0.19 g Cr·TJ−1, respectively. About 981 kg·y−1 of Cr was discharged into the atmosphere from Guizhuo’s CFPPs in 2017, much lower than previous reported values. Most of the Cr in the CFPPs ended up in solid combustion products, identifying the need for the careful disposal of high-Cr-containing ashes (up to 500 mg·kg−1) to prevent possible mobilization into the environment.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos11090951