An anti-inertial motion bias explains people discounting inertial motion of carried objects
In this paper we propose an anti-inertial motion (AIM) bias that can explain several intuitive physics beliefs including the straight-down belief and beliefs held concerning the pendulum problem. We show how the AIM bias also explains two new beliefs that we explore – a straight-up-and-down belief a...
Saved in:
Published in | Attention, perception & psychophysics Vol. 84; no. 5; pp. 1699 - 1717 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we propose an anti-inertial motion (AIM) bias that can explain several intuitive physics beliefs including the straight-down belief and beliefs held concerning the pendulum problem. We show how the AIM bias also explains two new beliefs that we explore – a straight-up-and-down belief as well as a straight-out/backward bias that occurs for objects traveling in one plane that are then thrown in another plane, ostensibly affording a greater opportunity for perception of canonical motion. We then show how the AIM bias in general is invariant across perceived/imagined speed of the object carrier, only altering percentages of straight-out from backward responses, and why occluding the carrier once the object is released into a second plane does not result in more veridical perception. The AIM bias serves as a simple explanation for a family of beliefs including those in the current paper as well as those shown in previous work. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1943-3921 1943-393X |
DOI: | 10.3758/s13414-022-02514-2 |