Studies on the structural and functional aspects of Rhodotorula gracilis D-amino acid oxidase by limited trypsinolysis

The structure-function relationships of purified Rhodotorula gracilis D-amino acid oxidase (in its holo-, apo- and holo-enzyme-benzoate complex forms) was analysed by digestion with trypsin. In all cases trypsin cleaves this 80 kDa dimeric enzyme at the C-terminal region, since the peptide bonds sen...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 310 ( Pt 2); no. 2; pp. 577 - 583
Main Authors Pollegioni, L, Ceciliani, F, Curti, B, Ronchi, S, Pilone, M S
Format Journal Article
LanguageEnglish
Published England 01.09.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The structure-function relationships of purified Rhodotorula gracilis D-amino acid oxidase (in its holo-, apo- and holo-enzyme-benzoate complex forms) was analysed by digestion with trypsin. In all cases trypsin cleaves this 80 kDa dimeric enzyme at the C-terminal region, since the peptide bonds sensitive to proteinase attack are clustered in this region. Digestion of native enzyme with trypsin produced a nicked and truncated form of 38.3 kDa containing two polypeptides of 34 and 5 kDa starting from Met1 and Ala319 respectively, and with detachment of the Thr306-Arg318 and Glu365-Leu368 peptides. Our results show that this 'core', folded into a compact structure, is catalytically competent. The acquisition of this nicked form was marked by a shift from a dimeric to a monomeric active enzyme, a result never previously obtained. The deleted sequences, Thr306-Arg318 and Glu365-Leu368, are essential for the monomer-monomer interaction, and, in particular, the region encompassing Thr306-Arg318 should play an essential role in the dimerization process. interestingly, the Ser308-Lys321 sequence present in the lost peptide corresponds to a sequence not present in other known D-amino acid oxidases [Faotto, Pollegioni, Ceciliani, Ronchi and Pilone (1995) Biotechnol. Lett. 17, 193-198]. A role of the cleaved-off region for the thermostabilization of the enzyme is also discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3100577