High Temperature Mechanical Properties of Free-Standing HVOF CoNiCrAlY Coatings by Lateral Compression of Circular Tube

MCrAlY, M means Co and/or Ni, sprayed coating is used to protect a super alloy substrate from corrosion or oxidation in a gas turbine blade. However, the mechanical properties are not well-known, because there are few proper measurement methods for a thin coating at high temperature. Authors have de...

Full description

Saved in:
Bibliographic Details
Published inJournal of Solid Mechanics and Materials Engineering Vol. 2; no. 8; pp. 1161 - 1171
Main Authors WAKI, Hiroyuki, NAKAMURA, Kyousuke, YAMAGUCHI, Itsuki, KOBAYASHI, Akira
Format Journal Article
LanguageEnglish
Published The Japan Society of Mechanical Engineers 2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:MCrAlY, M means Co and/or Ni, sprayed coating is used to protect a super alloy substrate from corrosion or oxidation in a gas turbine blade. However, the mechanical properties are not well-known, because there are few proper measurement methods for a thin coating at high temperature. Authors have developed the new easy method to measure the mechanical properties using the lateral compression of a circular tube. The method is useful to apply to a thin coating because it does not need chucking and manufacturing a test piece is very easy. The method is also easily applicable to high temperature measurement. In this study, high temperature mechanical properties, Young's modulus, bending strength and fracture strain, of CoNiCrAlY coatings by HVOF were systematically measured. The results obtained were as follows: Young's modulus and bending strength suddenly decreased beyond 400∼450°C. The Young's modulus and bending strength thermally treated at higher than 1050°C was significantly higher than that of virgin CoNiCrAlY coating. It was found that higher thermal treatment in atmosphere was the most effective in increasing the Young's modulus and bending strength. It was also found that the improvement of Young's modulus was primarily caused by not the effect of TGO but the sintering and diffusion of unfused particles. On the contrary, the fracture strain increased beyond 400°C differently from the bending strength. The fracture strains of CoNiCrAlY thermally treated in vacuum were higher than those of CoNiCrAlY treated in atmosphere. It was found that higher thermal treatment in vacuum was the most effective in increasing the fracture strain.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1880-9871
1880-9871
DOI:10.1299/jmmp.2.1161