A Generalized Technique of Modeling, Analysis, and Control of a Matrix Converter Using SVD
In this paper, a new simple and complete technique of modeling and analysis of a matrix converter is presented based on the singular value decomposition (SVD) of modulation matrix. The proposed modeling method yields a new limitation between the matrix converter gain and its input power factor, whic...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 58; no. 3; pp. 949 - 959 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a new simple and complete technique of modeling and analysis of a matrix converter is presented based on the singular value decomposition (SVD) of modulation matrix. The proposed modeling method yields a new limitation between the matrix converter gain and its input power factor, which is more relaxed as compared to the limits reported so far in the literature. The SVD of the modulation matrix leads to a unified modulation technique which achieves the full capability of a matrix converter. It is shown that this approach is general and all other modulation methods established for a matrix converter are specific cases of this technique. The proposed modulation method can be used to obtain the maximum reactive power in the input of a matrix converter in applications such as wind turbine and microturbine generators, where the input reactive power control is necessary. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2010.2048836 |