Effects of calcium, samarium addition on microstructure and mechanical properties of AZ61 magnesium alloy

The microstructure and mechanical properties of AZ61 magnesium alloy with Ca, Sm addition were investigated. The results showed that the addition of 0.5 wt.% Ca reduced the quantity of Mg17Al12 phase, and formed a new Al4 Ca phase which is reticular in AZ61 alloy. With the addition of Ca and Sm, the...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 33; no. 1; pp. 86 - 92
Main Author 陈玉安 金李 方丹 宋裕 叶睿宇
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The microstructure and mechanical properties of AZ61 magnesium alloy with Ca, Sm addition were investigated. The results showed that the addition of 0.5 wt.% Ca reduced the quantity of Mg17Al12 phase, and formed a new Al4 Ca phase which is reticular in AZ61 alloy. With the addition of Ca and Sm, the microstructure was further refined and new Al-Sm rich phases were formed in AZ61 alloy with 0.6 wt.%-1.5 wt.% Sm addition, the TEM analysis confirmed that they were Al2 Sm and Al4 Sm. Tensile tests showed that 1.0 wt.% Sm addition contributed to the formation of the Al2 Sm and Al4 Sm and the improvement in the ambient strength, i.e., an ultimate tensile strength of 327 MPa and an elongation of 10.1%. However, excessive Sm addition led to the coarsening of Al2 Sm and Al4 Sm phases, thus resulted in the decline of strength and plasticity.
Bibliography:11-2788/TF
AZ61 magnesium; microstructure; mechanical properties; samarium; rare earths
CHEN Yu 'an, JIN Li, FANG Dan, SONG Yu, YE Ruiyu( 1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China," 2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China)
The microstructure and mechanical properties of AZ61 magnesium alloy with Ca, Sm addition were investigated. The results showed that the addition of 0.5 wt.% Ca reduced the quantity of Mg17Al12 phase, and formed a new Al4 Ca phase which is reticular in AZ61 alloy. With the addition of Ca and Sm, the microstructure was further refined and new Al-Sm rich phases were formed in AZ61 alloy with 0.6 wt.%-1.5 wt.% Sm addition, the TEM analysis confirmed that they were Al2 Sm and Al4 Sm. Tensile tests showed that 1.0 wt.% Sm addition contributed to the formation of the Al2 Sm and Al4 Sm and the improvement in the ambient strength, i.e., an ultimate tensile strength of 327 MPa and an elongation of 10.1%. However, excessive Sm addition led to the coarsening of Al2 Sm and Al4 Sm phases, thus resulted in the decline of strength and plasticity.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(14)60387-2