Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice

It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T(b)) in a mouse model of porphyria with impaired...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 303; no. 1; pp. R8 - R18
Main Authors Iwadate, Reiko, Satoh, Yoko, Watanabe, Yukino, Kawai, Hiroshi, Kudo, Naomi, Kawashima, Yoichi, Mashino, Tadahiko, Mitsumoto, Atsushi
Format Journal Article
LanguageEnglish
Published United States 01.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T(b)) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T(b) or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T(b) rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg(-1)·day(-1)) or glucose (9 g·kg(-1)·day(-1)) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00019.2011