Myocardial mechanics in aortic and mitral valvular regurgitation: the concept of instantaneous impedance as a determinant of the performance of the intact heart

The effects on myocardial mechanics of acute, artificial aortic and mitral regurgitation were studied in the dog to determine the manner in which the changes in load induced by valvular regurgitation alter ventricular performance. With mitral and aortic regurgitant volumes of approximately the same...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 47; no. 4; pp. 867 - 883
Main Authors Urschel, C W, Covell, J W, Sonnenblick, E H, Ross, Jr, J, Braunwald, E
Format Journal Article
LanguageEnglish
Published United States 01.04.1968
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects on myocardial mechanics of acute, artificial aortic and mitral regurgitation were studied in the dog to determine the manner in which the changes in load induced by valvular regurgitation alter ventricular performance. With mitral and aortic regurgitant volumes of approximately the same magnitude as the forward stroke volume, immediate increases occurred in total stroke volume, left ventricular enddiastolic pressure, and peak ejection velocity, whereas contractility remained unchanged. Although calculated myocardial fiber tension rose, the rate of decline of tension during ejection was accelerated with regurgitation due to the more rapid decrease in ventricular size. Average tension therefore decreased relative to average pressure. As a consequence of the increased fiber length and this unloading, contractile element velocity, work, and power were increased. Despite unchanged contractility of the myocardium, the ejection fraction rose with both aortic and mitral regurgitation.When regurgitant beats were compared with control beats at a constant end-diastolic volume, ventricular stroke volume, work, power, and ejection fraction, as well as contractile element velocity, work, and power consistently increased. Thus, reduction of instantaneous impedance to ejection allowed the ventricle to empty further, reducing ventricular wall tension with a resultant increase in the velocity of shortening. External energy output was increased despite unchanged contractility and diastolic fiber length. It is concluded that the impedance to ejection and myocardial fiber tension during ejection govern the velocity and extent of contractile element shortening, and hence affect stroke volume, peak aortic flow rate, and ejection fraction. The alterations of ventricular function accompanying valvular regurgitation can be explained by an evaluation of the effects of these lesions on the instantaneous impedance to left ventricular ejection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9738
DOI:10.1172/JCI105780