The build up construction for codes over a non-commutative non-unitary ring of order $ 9
The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 7; pp. 18278 - 18307 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2024892 |
Cover
Loading…
Abstract | The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete. |
---|---|
AbstractList | The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete. |
Author | Alahmadi, Adel Alihia, Tamador Solé, Patrick |
Author_xml | – sequence: 1 givenname: Adel surname: Alahmadi fullname: Alahmadi, Adel organization: Research Group of Algebraic Structures and Applications, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 2 givenname: Tamador surname: Alihia fullname: Alihia, Tamador organization: Research Group of Algebraic Structures and Applications, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Mathematics, College of Science, Qassim University, Qassim 52373, Saudi Arabia – sequence: 3 givenname: Patrick surname: Solé fullname: Solé, Patrick organization: I2M, (Aix Marseille University, CNRS, Centrale Marseille), Marseilles, France |
BackLink | https://hal.science/hal-04598333$$DView record in HAL |
BookMark | eNpVUU1LAzEQDVLBWnvzB-TgRXBrvnaTHEtRKxS8VPAWskm2TdluSna34L832xbR08y8efNmmHcLRk1oHAD3GM2opOx5r7vtjCDChCRXYEwYp1khhRj9yW_AtG13CCGCCSOcjcHXeutg2fvawv4ATWjaLvam86GBVYgJsK6F4egi1DAtzEzY7_tOd_7oTnXf-E7Hbxh9s4GhgiHaxH2A8g5cV7pu3fQSJ-Dz9WW9WGarj7f3xXyVGVrILuM4r3RJCplzRguMiaFWMlbSUjheFTSXpuTEkNympsVMWqaxMXwIWEpCJ-D9rGuD3qlD9Pt0jgraqxMQ4kbp2HlTO6UZR8ISkh5hmRGFKJ3IORZpN85lIZPW41lrq-t_Usv5Sg0YYrkUlNIjTtynM9fE0LbRVb8DGKnBEDUYoi6G0B8erH07 |
Cites_doi | 10.1109/ACCESS.2023.3261131 10.1016/j.disc.2007.08.024 10.1080/0025570X.1993.11996133 10.1142/S0219498822501420 10.3390/math11234736 10.11568/kjm.2017.25.2.201 10.4134/BKMS.2015.52.3.915 10.1137/0131058 10.1142/S0219498822501432 10.1109/TIT.2011.2177809 10.4134/BKMS.2012.49.1.135 10.3390/math12060860 10.1016/j.jcta.2003.10.003 10.1006/jsco.1996.0125 10.1023/A:1021185314365 |
ContentType | Journal Article |
Copyright | Attribution |
Copyright_xml | – notice: Attribution |
DBID | AAYXX CITATION 1XC VOOES DOA |
DOI | 10.3934/math.2024892 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 18307 |
ExternalDocumentID | oai_doaj_org_article_a4708d22988d4c868be8571895715969 oai_HAL_hal_04598333v1 10_3934_math_2024892 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN 1XC VOOES |
ID | FETCH-LOGICAL-c369t-715fab26957436112c3d944b3b8e7f6359cb72c25d611d149d4a1cc7d4a119923 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:16:15 EDT 2025 Fri May 09 12:12:57 EDT 2025 Tue Jul 01 03:57:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | self-dual codes non-unitary rings build-up construction |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-715fab26957436112c3d944b3b8e7f6359cb72c25d611d149d4a1cc7d4a119923 |
ORCID | 0000-0002-7758-3537 |
OpenAccessLink | https://doaj.org/article/a4708d22988d4c868be8571895715969 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4708d22988d4c868be8571895715969 hal_primary_oai_HAL_hal_04598333v1 crossref_primary_10_3934_math_2024892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2024892-11 key-10.3934/math.2024892-10 key-10.3934/math.2024892-15 key-10.3934/math.2024892-14 key-10.3934/math.2024892-13 key-10.3934/math.2024892-12 key-10.3934/math.2024892-4 key-10.3934/math.2024892-3 key-10.3934/math.2024892-6 key-10.3934/math.2024892-5 key-10.3934/math.2024892-8 key-10.3934/math.2024892-7 key-10.3934/math.2024892-9 key-10.3934/math.2024892-17 key-10.3934/math.2024892-16 key-10.3934/math.2024892-2 key-10.3934/math.2024892-1 |
References_xml | – ident: key-10.3934/math.2024892-2 doi: 10.1109/ACCESS.2023.3261131 – ident: key-10.3934/math.2024892-17 – ident: key-10.3934/math.2024892-7 doi: 10.1016/j.disc.2007.08.024 – ident: key-10.3934/math.2024892-9 doi: 10.1080/0025570X.1993.11996133 – ident: key-10.3934/math.2024892-3 doi: 10.1142/S0219498822501420 – ident: key-10.3934/math.2024892-4 doi: 10.3390/math11234736 – ident: key-10.3934/math.2024892-15 doi: 10.11568/kjm.2017.25.2.201 – ident: key-10.3934/math.2024892-12 – ident: key-10.3934/math.2024892-14 doi: 10.4134/BKMS.2015.52.3.915 – ident: key-10.3934/math.2024892-16 doi: 10.1137/0131058 – ident: key-10.3934/math.2024892-1 doi: 10.1142/S0219498822501432 – ident: key-10.3934/math.2024892-6 doi: 10.1109/TIT.2011.2177809 – ident: key-10.3934/math.2024892-10 doi: 10.4134/BKMS.2012.49.1.135 – ident: key-10.3934/math.2024892-5 doi: 10.3390/math12060860 – ident: key-10.3934/math.2024892-13 doi: 10.1016/j.jcta.2003.10.003 – ident: key-10.3934/math.2024892-8 doi: 10.1006/jsco.1996.0125 – ident: key-10.3934/math.2024892-11 doi: 10.1023/A:1021185314365 |
SSID | ssj0002124274 |
Score | 2.257077 |
Snippet | The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to... |
SourceID | doaj hal crossref |
SourceType | Open Website Open Access Repository Index Database |
StartPage | 18278 |
SubjectTerms | build-up construction Information Theory Mathematics non-unitary rings self-dual codes |
Title | The build up construction for codes over a non-commutative non-unitary ring of order $ 9 |
URI | https://hal.science/hal-04598333 https://doaj.org/article/a4708d22988d4c868be8571895715969 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeshCMVlu_Yo8FUVWIMlHULbIviZhoRVsk_j13TlraiYUlUZwotr9LfHf23WfGbp2N6PdoENr1gtC2F0UsghGVgQy1MZQuZbmOXuxwrJ8mZrKx1RfFhNX0wDVwnaCzriuk9M4VGpx1sXQGB1SPB-NtSt1DnbfhTNEYjAOyRn-rjnRXXukO2n-09iC183JLByWqftQs76uZ1KRZBgdsvzEJeb9uyiHbKT-O2N5ozac6P2ZvKE0eaQdrvpxxmP7SvnI0Ojnlpc85BWPywNGfF0BpH4vE6Z2ul_jjhs9vTpN4fFrxRLjJ_QkbDx5fH4ai2RFBgLJ-IbDLVYjSYue1smgqgSq81lFFV2YV2g4eYiZBmgJvFuj8FDr0ADI6UZypOmUtrLU8Y1yHEoxxXSAGeYiFdzZDjSarTFsdANrsboVRPquJL3J0GAjLnLDMGyzb7J4AXD9DdNWpAIWYN0LM_xJim90g_FvvGPafcypDk9M7pdRX7_w_arpgu9TwehLlkrVQWuUVmhWLeJ2-oB_pRMag |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+build+up+construction+for+codes+over+a+non-commutative+non-unitary+ring+of+order+9&rft.jtitle=AIMS+mathematics&rft.au=Adel+Alahmadi&rft.au=Tamador+Alihia&rft.au=Patrick+Sol%C3%A9&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=7&rft.spage=18278&rft.epage=18307&rft_id=info:doi/10.3934%2Fmath.2024892&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a4708d22988d4c868be8571895715969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |