The build up construction for codes over a non-commutative non-unitary ring of order $ 9

The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 7; pp. 18278 - 18307
Main Authors Alahmadi, Adel, Alihia, Tamador, Solé, Patrick
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2024892

Cover

Loading…
Abstract The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete.
AbstractList The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete.
Author Alahmadi, Adel
Alihia, Tamador
Solé, Patrick
Author_xml – sequence: 1
  givenname: Adel
  surname: Alahmadi
  fullname: Alahmadi, Adel
  organization: Research Group of Algebraic Structures and Applications, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– sequence: 2
  givenname: Tamador
  surname: Alihia
  fullname: Alihia, Tamador
  organization: Research Group of Algebraic Structures and Applications, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Mathematics, College of Science, Qassim University, Qassim 52373, Saudi Arabia
– sequence: 3
  givenname: Patrick
  surname: Solé
  fullname: Solé, Patrick
  organization: I2M, (Aix Marseille University, CNRS, Centrale Marseille), Marseilles, France
BackLink https://hal.science/hal-04598333$$DView record in HAL
BookMark eNpVUU1LAzEQDVLBWnvzB-TgRXBrvnaTHEtRKxS8VPAWskm2TdluSna34L832xbR08y8efNmmHcLRk1oHAD3GM2opOx5r7vtjCDChCRXYEwYp1khhRj9yW_AtG13CCGCCSOcjcHXeutg2fvawv4ATWjaLvam86GBVYgJsK6F4egi1DAtzEzY7_tOd_7oTnXf-E7Hbxh9s4GhgiHaxH2A8g5cV7pu3fQSJ-Dz9WW9WGarj7f3xXyVGVrILuM4r3RJCplzRguMiaFWMlbSUjheFTSXpuTEkNympsVMWqaxMXwIWEpCJ-D9rGuD3qlD9Pt0jgraqxMQ4kbp2HlTO6UZR8ISkh5hmRGFKJ3IORZpN85lIZPW41lrq-t_Usv5Sg0YYrkUlNIjTtynM9fE0LbRVb8DGKnBEDUYoi6G0B8erH07
Cites_doi 10.1109/ACCESS.2023.3261131
10.1016/j.disc.2007.08.024
10.1080/0025570X.1993.11996133
10.1142/S0219498822501420
10.3390/math11234736
10.11568/kjm.2017.25.2.201
10.4134/BKMS.2015.52.3.915
10.1137/0131058
10.1142/S0219498822501432
10.1109/TIT.2011.2177809
10.4134/BKMS.2012.49.1.135
10.3390/math12060860
10.1016/j.jcta.2003.10.003
10.1006/jsco.1996.0125
10.1023/A:1021185314365
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.3934/math.2024892
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 18307
ExternalDocumentID oai_doaj_org_article_a4708d22988d4c868be8571895715969
oai_HAL_hal_04598333v1
10_3934_math_2024892
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
1XC
VOOES
ID FETCH-LOGICAL-c369t-715fab26957436112c3d944b3b8e7f6359cb72c25d611d149d4a1cc7d4a119923
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:16:15 EDT 2025
Fri May 09 12:12:57 EDT 2025
Tue Jul 01 03:57:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords self-dual codes
non-unitary rings
build-up construction
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-715fab26957436112c3d944b3b8e7f6359cb72c25d611d149d4a1cc7d4a119923
ORCID 0000-0002-7758-3537
OpenAccessLink https://doaj.org/article/a4708d22988d4c868be8571895715969
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_a4708d22988d4c868be8571895715969
hal_primary_oai_HAL_hal_04598333v1
crossref_primary_10_3934_math_2024892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024892-11
key-10.3934/math.2024892-10
key-10.3934/math.2024892-15
key-10.3934/math.2024892-14
key-10.3934/math.2024892-13
key-10.3934/math.2024892-12
key-10.3934/math.2024892-4
key-10.3934/math.2024892-3
key-10.3934/math.2024892-6
key-10.3934/math.2024892-5
key-10.3934/math.2024892-8
key-10.3934/math.2024892-7
key-10.3934/math.2024892-9
key-10.3934/math.2024892-17
key-10.3934/math.2024892-16
key-10.3934/math.2024892-2
key-10.3934/math.2024892-1
References_xml – ident: key-10.3934/math.2024892-2
  doi: 10.1109/ACCESS.2023.3261131
– ident: key-10.3934/math.2024892-17
– ident: key-10.3934/math.2024892-7
  doi: 10.1016/j.disc.2007.08.024
– ident: key-10.3934/math.2024892-9
  doi: 10.1080/0025570X.1993.11996133
– ident: key-10.3934/math.2024892-3
  doi: 10.1142/S0219498822501420
– ident: key-10.3934/math.2024892-4
  doi: 10.3390/math11234736
– ident: key-10.3934/math.2024892-15
  doi: 10.11568/kjm.2017.25.2.201
– ident: key-10.3934/math.2024892-12
– ident: key-10.3934/math.2024892-14
  doi: 10.4134/BKMS.2015.52.3.915
– ident: key-10.3934/math.2024892-16
  doi: 10.1137/0131058
– ident: key-10.3934/math.2024892-1
  doi: 10.1142/S0219498822501432
– ident: key-10.3934/math.2024892-6
  doi: 10.1109/TIT.2011.2177809
– ident: key-10.3934/math.2024892-10
  doi: 10.4134/BKMS.2012.49.1.135
– ident: key-10.3934/math.2024892-5
  doi: 10.3390/math12060860
– ident: key-10.3934/math.2024892-13
  doi: 10.1016/j.jcta.2003.10.003
– ident: key-10.3934/math.2024892-8
  doi: 10.1006/jsco.1996.0125
– ident: key-10.3934/math.2024892-11
  doi: 10.1023/A:1021185314365
SSID ssj0002124274
Score 2.257077
Snippet The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 18278
SubjectTerms build-up construction
Information Theory
Mathematics
non-unitary rings
self-dual codes
Title The build up construction for codes over a non-commutative non-unitary ring of order $ 9
URI https://hal.science/hal-04598333
https://doaj.org/article/a4708d22988d4c868be8571895715969
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeshCMVlu_Yo8FUVWIMlHULbIviZhoRVsk_j13TlraiYUlUZwotr9LfHf23WfGbp2N6PdoENr1gtC2F0UsghGVgQy1MZQuZbmOXuxwrJ8mZrKx1RfFhNX0wDVwnaCzriuk9M4VGpx1sXQGB1SPB-NtSt1DnbfhTNEYjAOyRn-rjnRXXukO2n-09iC183JLByWqftQs76uZ1KRZBgdsvzEJeb9uyiHbKT-O2N5ozac6P2ZvKE0eaQdrvpxxmP7SvnI0Ojnlpc85BWPywNGfF0BpH4vE6Z2ul_jjhs9vTpN4fFrxRLjJ_QkbDx5fH4ai2RFBgLJ-IbDLVYjSYue1smgqgSq81lFFV2YV2g4eYiZBmgJvFuj8FDr0ADI6UZypOmUtrLU8Y1yHEoxxXSAGeYiFdzZDjSarTFsdANrsboVRPquJL3J0GAjLnLDMGyzb7J4AXD9DdNWpAIWYN0LM_xJim90g_FvvGPafcypDk9M7pdRX7_w_arpgu9TwehLlkrVQWuUVmhWLeJ2-oB_pRMag
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+build+up+construction+for+codes+over+a+non-commutative+non-unitary+ring+of+order+9&rft.jtitle=AIMS+mathematics&rft.au=Adel+Alahmadi&rft.au=Tamador+Alihia&rft.au=Patrick+Sol%C3%A9&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=7&rft.spage=18278&rft.epage=18307&rft_id=info:doi/10.3934%2Fmath.2024892&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a4708d22988d4c868be8571895715969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon