The build up construction for codes over a non-commutative non-unitary ring of order $ 9
The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 7; pp. 18278 - 18307 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024892 |