Circular Kardar-Parisi-Zhang interfaces evolving out of the plane

Circular KPZ interfaces spreading radially in the plane have Gaussian unitary ensemble (GUE) Tracy-Widom (TW) height distribution (HD) and Airy_{2} spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a mountain, or any surf...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 99; no. 3-1; p. 032140
Main Authors Carrasco, I S S, Oliveira, T J
Format Journal Article
LanguageEnglish
Published United States 28.03.2019
Online AccessGet more information

Cover

Loading…
More Information
Summary:Circular KPZ interfaces spreading radially in the plane have Gaussian unitary ensemble (GUE) Tracy-Widom (TW) height distribution (HD) and Airy_{2} spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a mountain, or any surface of revolution? To give an answer to this, we report here extensive numerical analyses of several one-dimensional KPZ models on substrates whose size enlarges as 〈L(t)〉=L_{0}+ωt^{γ}, while their mean height 〈h〉 increases as usual [〈h〉∼t]. We show that the competition between the L enlargement and the correlation length (ξ≃ct^{1/z}) plays a key role in the asymptotic statistics of the interfaces. While systems with γ>1/z have HDs given by GUE and the interface width increasing as w∼t^{β}, for γ<1/z the HDs are Gaussian, in a correlated regime where w∼t^{αγ}. For the special case γ=1/z, a continuous class of distributions exists, which interpolate between Gaussian (for small ω/c) and GUE (for ω/c≫1). Interestingly, the HD seems to agree with the Gaussian symplectic ensemble (GSE) TW distribution for ω/c≈10. Despite the GUE HDs for γ>1/z, the spatial covariances present a strong dependence on the parameters ω and γ, agreeing with Airy_{2} only for ω≫1, for a given γ, or when γ=1, for a fixed ω. These results considerably generalize our knowledge on 1D KPZ systems, unveiling the importance of the background space on their statistics.
ISSN:2470-0053
DOI:10.1103/physreve.99.032140