Hierarchical HDTV/SDTV compatible coding using Kalman statistical filtering

This paper addresses the issue of hierarchical coding of digital television. A two-layer coding scheme is presented to provide compatibility of standard-definition television (SDTV) and high-definition television (HDTV). The scheme is based on a spatio-temporal pyramid coding technique. We address t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 9; no. 3; pp. 424 - 437
Main Authors Tihao Chiang, Anastassiou, D.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.1999
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the issue of hierarchical coding of digital television. A two-layer coding scheme is presented to provide compatibility of standard-definition television (SDTV) and high-definition television (HDTV). The scheme is based on a spatio-temporal pyramid coding technique. We address the problem of interlaced-to-interlaced two-layer compatible coding where both layers are interlaced. The resolution translation is important for the visual quality of the SDTV layer and for the performance of the HDTV layer. A motion-compensated up/down deinterlacing scheme is used to improve the performance. A spatio-temporal averaging technique is used to give a better compatible prediction so that the HDTV layer has a high compression performance. To offer an improved prediction, systematic analysis of the remaining statistical redundancy of the enhancement signal is conducted. Based on an autoregressive model of the difference signal, a Kalman statistical filtering is used to exploit such a redundancy. We combine a recursive filtering and discrete cosine transform (DCT) coding using QR decomposition, where Q is an orthonormal matrix and R is an upper triangular matrix. The error accumulation is cancelled in the DCT frequency domain. The results show peak signal-to-noise-ratio improvements over simulcast as high as 1.2 dB. The new technique, which is referred to as spatial scalability using a Kalman filter (SSKF), achieves a comparable or better picture quality than that of a nonscalable approach for high-quality video coding. The near optimal performance is demonstrated by the white Gaussian noise property of the residual signal.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-8215
1558-2205
DOI:10.1109/76.754772