Virulent strain associated outer membrane proteins of Borrelia burgdorferi

We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 96; no. 5; pp. 2380 - 2392
Main Authors Skare, J T, Shang, E S, Foley, D M, Blanco, D R, Champion, C I, Mirzabekov, T, Sokolov, Y, Kagan, B L, Miller, J N, Lovett, M A
Format Journal Article
LanguageEnglish
Published United States 01.11.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9738
DOI:10.1172/JCI118295