Rapid single flux quantum T-flip flop operating up to 770 GHz

Rapid Single Flux Quantum (RSFQ) T-flip flops (TFFs) operating up to 770 GHz have been demonstrated at 4.2 K. The devices, consisting of either resistively shunted or unshunted Josephson junctions, are fabricated using a planarized Nb/AlO/sub x//Nb trilayer process. Electron beam lithography is used...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 9; no. 2; pp. 3212 - 3215
Main Authors Chen, W., Rylyakov, A.V., Patel, V., Lukens, J.E., Likharev, K.K.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.06.1999
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rapid Single Flux Quantum (RSFQ) T-flip flops (TFFs) operating up to 770 GHz have been demonstrated at 4.2 K. The devices, consisting of either resistively shunted or unshunted Josephson junctions, are fabricated using a planarized Nb/AlO/sub x//Nb trilayer process. Electron beam lithography is used to pattern all levels with a minimum junction area less than 0.1 /spl mu/m/sup 2/. Critical current densities of 0.5 mA//spl mu/m/sup 2/ and 2.5 mA//spl mu/m/sup 2/ are used for the shunted (tested at 1.8 K) and unshunted devices (tested at 4.2 K) respectively. The input and output frequencies of the TFFs are obtained from the input and output voltages by the Josephson relation. The output voltage is exactly half of the input voltage when the divide-by-two operation is correct.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ISSN:1051-8223
1558-2515
DOI:10.1109/77.783712