TNSA based proton acceleration by two oblique laser pulses in the presence of an axial magnetic field

We employ two-dimensional particle-in-cell simulations to examine, in detail, the effect of a kilo-Tesla magnetic field applied along the normal of a flat TNSA target on the cutoff energy of protons/ions. The two cases of (i) normally incident single laser pulse, and (ii) two obliquely incident lase...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 26; no. 8; pp. 83026 - 83035
Main Authors Khan, Imran, Saxena, Vikrant
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We employ two-dimensional particle-in-cell simulations to examine, in detail, the effect of a kilo-Tesla magnetic field applied along the normal of a flat TNSA target on the cutoff energy of protons/ions. The two cases of (i) normally incident single laser pulse, and (ii) two obliquely incident laser pulses are thoroughly examined. It is shown that the two-oblique-pulse configuration combined with an external magnetic field results in a stronger enhancement (56 MeV–75 MeV) in the protons’ cutoff energies than the normally incident single laser pulse with an external magnetic field (19 MeV–24 MeV). This combination of two-oblique laser pulses along with a kilo-Tesla level external magnetic field is therefore found to be highly effective in accelerating protons/ions in the TNSA regime.
Bibliography:NJP-117530.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ad7052