High speed readout electronics development for frequency-multiplexed kinetic inductance detector design optimization
Microwave Kinetic Inductance Detectors (MKID) are a promising solution for spaceborne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propagation in silicon must be studied. A dedicated fas...
Saved in:
Published in | Journal of instrumentation Vol. 8; no. 12; p. C12006 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microwave Kinetic Inductance Detectors (MKID) are a promising solution for spaceborne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propagation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100 MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~2 Msps. This paper describes the technical solution chosen and the results obtained. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/8/12/C12006 |