Thermal modeling of plasma spray deposition of nanostructured ceramics

A thermal model for plasma spray deposition of ceramic materials onto metallic substrates has been developed. The enthalpy-based control volume formulation of the heat transfer processes has been used to study the temperature evolution in a two-dimensional substrate and in the coating as it is grown...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal spray technology Vol. 8; no. 2; pp. 315 - 322
Main Authors AHMED, I, BERGMAN, T. L
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.06.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A thermal model for plasma spray deposition of ceramic materials onto metallic substrates has been developed. The enthalpy-based control volume formulation of the heat transfer processes has been used to study the temperature evolution in a two-dimensional substrate and in the coating as it is grown. In this paper, additional melting of ceramic splats after deposition is examined, with a view to predicting the retention of nanostructures in a spray consisting of agglomerated, nanometer-sized particles. Initial results for thin coatings indicate that when the mean temperature of the incoming particles is close to the fusion point of the ceramic material, the nanostructure distribution in the coating is largely determined by the composition of the spray. However, with thicker coatings, additional melting due to prolonged plasma gas heating combined with increased thermal resistance in the underlying coating leads to a loss of nanostructure.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1059-9630
1544-1016
DOI:10.1361/105996399770350539