Osteogenic-related gene expression profiles of human dental follicle cells induced by dexamethasone
Aim: Human dental follicle cells (hDFC) have the ability to differentiate into mineralized tissue-forming cells during root and periodontal development or osteogenic induction in vitro. The present study aimed to validate the osteogenic induction of hDFC by dexamethasone (DEX) and to explore the cha...
Saved in:
Published in | Acta pharmacologica Sinica Vol. 29; no. 9; pp. 1013 - 1020 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2008
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aim: Human dental follicle cells (hDFC) have the ability to differentiate into mineralized tissue-forming cells during root and periodontal development or osteogenic induction in vitro. The present study aimed to validate the osteogenic induction of hDFC by dexamethasone (DEX) and to explore the changes of related genes responsible for the osteogenic differentiation process. Methods: Passage-cultured hDFC were induced by DEX and analyzed for mineralization activity by morphological observation, alkaline phosphatase (ALP) activity, and alizarin red S staining. GEArray Q series human osteogenesis gene array was used to describe large-scale gene expression in treated hDFC compared to the control group. Quantitative real-time RT-PCR was performed to confirm the microarray data by analyzing the expression of 7 critical transcripts. Results: Osteogenic differentiation of hDFC was confirmed by morphological change, elevated ALP activity and calcified nodules. In 96 genes investigated through the microarray analysis, 20 genes were upregulated and 8 genes were downregulated more than 2-fold. The results of the real-time RT-PCR correlated with the microarray analysis. The expression of the transforming growth factor-β superfamily showed varying degrees of increase, and fibroblast growth factors exhibited a differential changing trend of expression. The expression of most types of collagen genes representative of extracellular matrixes increased under DEX treatment while small mothers against decapentaplegic 6 and 7 expressions significantly decreased. Conclusion: Our results demonstrated that hDFC displayed osteoblastic features in both phenotypic and genotypic traits induced by DEX in vitro. |
---|---|
Bibliography: | dexamethasone differentiation human dental follicle cell eDNA microarray human dental follicle cell; dexamethasone;eDNA microarray; differentiation R96 31-1347/R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1671-4083 1745-7254 |
DOI: | 10.1111/j.1745-7254.2008.00834.x |