A tool for bistatic SAR geometry determinations

The geometry of wide-angle bistatic Synthetic Aperture Radar (SAR) is somewhat more complex than that of conventional Synthetic Aperture Radar because the transmitter and receiver are displaced considerably. Constant bistatic range surfaces form ellipsoids, with the transmitter and receiver located...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 32; no. 11; pp. 2311 - 2318
Main Authors Hawkins, R.K., Gibson, J.R., Saper, R., Hilaire, M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2003
Online AccessGet full text

Cover

Loading…
More Information
Summary:The geometry of wide-angle bistatic Synthetic Aperture Radar (SAR) is somewhat more complex than that of conventional Synthetic Aperture Radar because the transmitter and receiver are displaced considerably. Constant bistatic range surfaces form ellipsoids, with the transmitter and receiver located at the two foci. These ellipsoids of constant bistatic range intersect the earth's surface in a series of ellipse-like contours. Constant Doppler lines intersect the range ellipses and allow, under special circumstances, a simple orthogonal basis for processing and analysis. This paper introduces a simple tool, developed in MatLab ® and C++, that uses RADARSAT-1 as a satellite illuminator and a tower-based receiver. Actual orbit parameters and data from RADARSAT-1 are used in the simulation of the bistatic geometry and scattering.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0273-1177
1879-1948
DOI:10.1016/S0273-1177(03)90559-X