Applications of Transition‐Metal‐Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update
Metal‐catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon‐carbon and carbon‐heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN2′‐...
Saved in:
Published in | Chemical record Vol. 21; no. 1; pp. 29 - 68 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Metal‐catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon‐carbon and carbon‐heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN2′‐type allylic substitution, which results in the formation of the above‐mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)‐catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
The application of transition‐metal (Pd, Ir, Mo, or Cu)‐catalyzed asymmetric allylic substitution (AAS) reaction as an effective and powerful tool using a wide range of allylic substrates in total synthesis of natural products is reported that covers the literature from 2003 to date. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1527-8999 1528-0691 1528-0691 |
DOI: | 10.1002/tcr.202000086 |