Hollow Heterostructured Nanocatalysts for Boosting Electrocatalytic Water Splitting
The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple...
Saved in:
Published in | Chemical record Vol. 23; no. 2; pp. e202200213 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple solutions to accelerate the HER/OER kinetics owing to their advantageous merit. Herein, the recent advances of hollow heterostructured nanocatalysts and their excellent performance for water splitting are systematically summarized. Starting by illustrating the intrinsically advantageous features of hollow heterostructures, achievements in engineering hollow heterostructured electrocatalysts are also highlighted with the focus on structural design, interfacial engineering, composition regulation, and catalytic evaluation. Finally, some perspective insights and future challenges of hollow heterostructured nanocatalysts for electrocatalytic water splitting are also discussed.
In view of the inherently structural and compositional advantages, this review manifested the recent progress of hollow heterostructrued electrocatalysts for the applications in water splitting, including the remarkable breakthroughs in HER/OER performance, structure regulations, interface engineering, and composition control. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1527-8999 1528-0691 1528-0691 |
DOI: | 10.1002/tcr.202200213 |