The influence of water retention curve hysteresis on the stability of unsaturated soil slopes

Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. The movement of wetting front and the hysteresis effect are important factors which impact the shear strength of the unsaturated soil and the mechanics of shallow landslides. These failures are mainly triggered...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 25; no. 23; pp. 3563 - 3574
Main Authors Ma, Kuo-Chen, Tan, Yih-Chi, Chen, Chu-Hui
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. The movement of wetting front and the hysteresis effect are important factors which impact the shear strength of the unsaturated soil and the mechanics of shallow landslides. These failures are mainly triggered by the deepening of the wetting front accompanied by a decrease in matric suction induced by infiltration. This research establishes a method for determining a stability analysis of unsaturated infinite soil slopes, integrating the influence of infiltration and the water retention curve hysteresis. Furthermore, the present stability analysis method including the infiltration model and the advanced Mohr–Coulomb failure criterion calculates the variations of the safety factor (FS) in accordance with different slope angle, depth and hydrological processes. The experimentally measured data on the effect of hysteresis are also carried out for comparison. Numerical analyses, employing both wetting and drying hydraulic behaviour of unsaturated soil, are performed to study the difference in soil‐water content as observed in the experiments. The simulating approximations also fully responded to the experimental data of sand box. The results suggest that the hysteresis behaviour affect the distribution of soil‐water content within the slope indeed. The hysteresis made the FS values a remarkable recovery during the period of non‐rainfall in a rainfall event. The appropriate hydraulic properties of soil (i.e. wetting or drying) should be used in accordance with the processes that unsaturated soil actually experience. This method will enable us to acquire more accurate matric suction head and the unsaturated soil‐shear strength as it changes with the hysteretic flow, in order to calculate into the stability analysis of shallow landslides. An advanced understanding of the process mechanism afforded by this method is critical to realizing a reliable and appropriate design for slope stabilization. It also offers some immediate reference information to the disaster reduction department of the government. Copyright © 2011 John Wiley & Sons, Ltd.
Bibliography:ark:/67375/WNG-17L1ZD8D-Q
ArticleID:HYP8081
istex:22FA403EF163ED804481BF8C55E1195B8BF11AD9
National Science Council in Taiwan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-6087
1099-1085
1099-1085
DOI:10.1002/hyp.8081