Amphiphilic chitosan-g-poly(trimethylene carbonate) – A new approach for biomaterials design

The paper presents the synthesis and characterization of poly(trimethylene carbonate) grafted chitosan as a new water soluble biopolymer suitable for in vivo applications. The synthesis was performed via ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) (TMC) monomer, initiate...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 193; no. Pt A; pp. 414 - 424
Main Authors Andreica, Bianca-Iustina, Ailincai, Daniela, Sandu, Andreea-Isabela, Marin, Luminita
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper presents the synthesis and characterization of poly(trimethylene carbonate) grafted chitosan as a new water soluble biopolymer suitable for in vivo applications. The synthesis was performed via ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) (TMC) monomer, initiated by the functional groups of chitosan in the presence of toluene as solvent/swelling agent. By varying the molar ratio between the glucosamine units of chitosan and TMC, a series of chitosan derivatives with different content of poly(trimethylene carbonate) chains was synthetized. The structural characterization of the polymers was realized by FTIR and 1H NMR spectroscopy and their solubility was assessed in water and in organic solvents as well. The biocompatibility was investigated by MTS assay on Normal Human Dermal Fibroblasts, and the biodegradability was evaluated in lysozyme buffer solution. Further, the surface properties of the polymer films were analyzed by polarized optical microscopy, atomic force microscopy and water-to-air contact angle measurements. It was established that, by 5% substitution of chitosan with poly(trimethylene carbonate) chains having an average polymerization degree of 7, a water soluble polymer can be attained. Compared to the pristine chitosan, it has improved biocompatibility in solution and moderate wettability and higher biodegradability rate in solid state, pointing its suitability for in vivo applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.10.174