Spectral continuity for operator matrices

In this paper we prove that if M_C=\pmatrix {A C\cr0 B} is a 2\times 2 upper triangular operator matrix on the Hilbert space H\bigoplus K and if \sigma (A)\cap \sigma (B)=\emptyset , then \sigma is continuous at A and B if and only if \sigma is continuous at M_C, for every C\in B(K,H{\hskip1}).

Saved in:
Bibliographic Details
Published inGlasgow mathematical journal Vol. 43; no. 3; pp. 487 - 490
Main Authors Djordjević, Slavisă V., Han, Young Min
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2001
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we prove that if M_C=\pmatrix {A C\cr0 B} is a 2\times 2 upper triangular operator matrix on the Hilbert space H\bigoplus K and if \sigma (A)\cap \sigma (B)=\emptyset , then \sigma is continuous at A and B if and only if \sigma is continuous at M_C, for every C\in B(K,H{\hskip1}).
Bibliography:istex:CDA1F235B50C8DA7C85909B38686BE58DABFEE33
ark:/67375/6GQ-P1T8MN66-T
PII:S0017089501030105
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089501030105