Context-aware fusion: A case study on fusion of gait and face for human identification in video

Most work on multi-biometric fusion is based on static fusion rules. One prominent limitation of static fusion is that it cannot respond to the changes of the environment or the individual users. This paper proposes context-aware multi-biometric fusion, which can dynamically adapt the fusion rules t...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 43; no. 10; pp. 3660 - 3673
Main Authors Geng, Xin, Smith-Miles, Kate, Wang, Liang, Li, Ming, Wu, Qiang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2010.04.012

Cover

Loading…
More Information
Summary:Most work on multi-biometric fusion is based on static fusion rules. One prominent limitation of static fusion is that it cannot respond to the changes of the environment or the individual users. This paper proposes context-aware multi-biometric fusion, which can dynamically adapt the fusion rules to the real-time context. As a typical application, the context-aware fusion of gait and face for human identification in video is investigated. Two significant context factors that may affect the relationship between gait and face in the fusion are considered, i.e., view angle and subject-to-camera distance. Fusion methods adaptable to these two factors based on either prior knowledge or machine learning are proposed and tested. Experimental results show that the context-aware fusion methods perform significantly better than not only the individual biometric traits, but also those widely adopted static fusion rules including SUM, PRODUCT, MIN, and MAX. Moreover, context-aware fusion based on machine learning shows superiority over that based on prior knowledge.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2010.04.012